Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+3\right)\left(x-8\right)=4x-8
Multiply both sides of the equation by 4.
x^{2}-5x-24=4x-8
Use the distributive property to multiply x+3 by x-8 and combine like terms.
x^{2}-5x-24-4x=-8
Subtract 4x from both sides.
x^{2}-9x-24=-8
Combine -5x and -4x to get -9x.
x^{2}-9x-24+8=0
Add 8 to both sides.
x^{2}-9x-16=0
Add -24 and 8 to get -16.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-16\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -9 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-16\right)}}{2}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81+64}}{2}
Multiply -4 times -16.
x=\frac{-\left(-9\right)±\sqrt{145}}{2}
Add 81 to 64.
x=\frac{9±\sqrt{145}}{2}
The opposite of -9 is 9.
x=\frac{\sqrt{145}+9}{2}
Now solve the equation x=\frac{9±\sqrt{145}}{2} when ± is plus. Add 9 to \sqrt{145}.
x=\frac{9-\sqrt{145}}{2}
Now solve the equation x=\frac{9±\sqrt{145}}{2} when ± is minus. Subtract \sqrt{145} from 9.
x=\frac{\sqrt{145}+9}{2} x=\frac{9-\sqrt{145}}{2}
The equation is now solved.
\left(x+3\right)\left(x-8\right)=4x-8
Multiply both sides of the equation by 4.
x^{2}-5x-24=4x-8
Use the distributive property to multiply x+3 by x-8 and combine like terms.
x^{2}-5x-24-4x=-8
Subtract 4x from both sides.
x^{2}-9x-24=-8
Combine -5x and -4x to get -9x.
x^{2}-9x=-8+24
Add 24 to both sides.
x^{2}-9x=16
Add -8 and 24 to get 16.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=16+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-9x+\frac{81}{4}=16+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-9x+\frac{81}{4}=\frac{145}{4}
Add 16 to \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{145}{4}
Factor x^{2}-9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{145}{4}}
Take the square root of both sides of the equation.
x-\frac{9}{2}=\frac{\sqrt{145}}{2} x-\frac{9}{2}=-\frac{\sqrt{145}}{2}
Simplify.
x=\frac{\sqrt{145}+9}{2} x=\frac{9-\sqrt{145}}{2}
Add \frac{9}{2} to both sides of the equation.