Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}-4-x\left(x-1\right)}{x\left(x-2\right)^{2}}\times \frac{x\left(x-2\right)}{-\left(x-4\right)}
Consider \left(x+2\right)\left(x-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
\frac{x^{2}-4-\left(x^{2}-x\right)}{x\left(x-2\right)^{2}}\times \frac{x\left(x-2\right)}{-\left(x-4\right)}
Use the distributive property to multiply x by x-1.
\frac{x^{2}-4-x^{2}+x}{x\left(x-2\right)^{2}}\times \frac{x\left(x-2\right)}{-\left(x-4\right)}
To find the opposite of x^{2}-x, find the opposite of each term.
\frac{-4+x}{x\left(x-2\right)^{2}}\times \frac{x\left(x-2\right)}{-\left(x-4\right)}
Combine x^{2} and -x^{2} to get 0.
\frac{-4+x}{x\left(x-2\right)^{2}}\times \frac{x\left(x-2\right)}{-x+4}
To find the opposite of x-4, find the opposite of each term.
\frac{\left(-4+x\right)x\left(x-2\right)}{x\left(x-2\right)^{2}\left(-x+4\right)}
Multiply \frac{-4+x}{x\left(x-2\right)^{2}} times \frac{x\left(x-2\right)}{-x+4} by multiplying numerator times numerator and denominator times denominator.
\frac{-x\left(x-2\right)\left(-x+4\right)}{x\left(-x+4\right)\left(x-2\right)^{2}}
Extract the negative sign in -4+x.
\frac{-1}{x-2}
Cancel out x\left(x-2\right)\left(-x+4\right) in both numerator and denominator.
\frac{x^{2}-4-x\left(x-1\right)}{x\left(x-2\right)^{2}}\times \frac{x\left(x-2\right)}{-\left(x-4\right)}
Consider \left(x+2\right)\left(x-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
\frac{x^{2}-4-\left(x^{2}-x\right)}{x\left(x-2\right)^{2}}\times \frac{x\left(x-2\right)}{-\left(x-4\right)}
Use the distributive property to multiply x by x-1.
\frac{x^{2}-4-x^{2}+x}{x\left(x-2\right)^{2}}\times \frac{x\left(x-2\right)}{-\left(x-4\right)}
To find the opposite of x^{2}-x, find the opposite of each term.
\frac{-4+x}{x\left(x-2\right)^{2}}\times \frac{x\left(x-2\right)}{-\left(x-4\right)}
Combine x^{2} and -x^{2} to get 0.
\frac{-4+x}{x\left(x-2\right)^{2}}\times \frac{x\left(x-2\right)}{-x+4}
To find the opposite of x-4, find the opposite of each term.
\frac{\left(-4+x\right)x\left(x-2\right)}{x\left(x-2\right)^{2}\left(-x+4\right)}
Multiply \frac{-4+x}{x\left(x-2\right)^{2}} times \frac{x\left(x-2\right)}{-x+4} by multiplying numerator times numerator and denominator times denominator.
\frac{-x\left(x-2\right)\left(-x+4\right)}{x\left(-x+4\right)\left(x-2\right)^{2}}
Extract the negative sign in -4+x.
\frac{-1}{x-2}
Cancel out x\left(x-2\right)\left(-x+4\right) in both numerator and denominator.