Evaluate
-\frac{1}{x-2}
Expand
-\frac{1}{x-2}
Graph
Share
Copied to clipboard
\frac{x^{2}-4-x\left(x-1\right)}{x\left(x-2\right)^{2}}\times \frac{x\left(x-2\right)}{-\left(x-4\right)}
Consider \left(x+2\right)\left(x-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
\frac{x^{2}-4-\left(x^{2}-x\right)}{x\left(x-2\right)^{2}}\times \frac{x\left(x-2\right)}{-\left(x-4\right)}
Use the distributive property to multiply x by x-1.
\frac{x^{2}-4-x^{2}+x}{x\left(x-2\right)^{2}}\times \frac{x\left(x-2\right)}{-\left(x-4\right)}
To find the opposite of x^{2}-x, find the opposite of each term.
\frac{-4+x}{x\left(x-2\right)^{2}}\times \frac{x\left(x-2\right)}{-\left(x-4\right)}
Combine x^{2} and -x^{2} to get 0.
\frac{-4+x}{x\left(x-2\right)^{2}}\times \frac{x\left(x-2\right)}{-x+4}
To find the opposite of x-4, find the opposite of each term.
\frac{\left(-4+x\right)x\left(x-2\right)}{x\left(x-2\right)^{2}\left(-x+4\right)}
Multiply \frac{-4+x}{x\left(x-2\right)^{2}} times \frac{x\left(x-2\right)}{-x+4} by multiplying numerator times numerator and denominator times denominator.
\frac{-x\left(x-2\right)\left(-x+4\right)}{x\left(-x+4\right)\left(x-2\right)^{2}}
Extract the negative sign in -4+x.
\frac{-1}{x-2}
Cancel out x\left(x-2\right)\left(-x+4\right) in both numerator and denominator.
\frac{x^{2}-4-x\left(x-1\right)}{x\left(x-2\right)^{2}}\times \frac{x\left(x-2\right)}{-\left(x-4\right)}
Consider \left(x+2\right)\left(x-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
\frac{x^{2}-4-\left(x^{2}-x\right)}{x\left(x-2\right)^{2}}\times \frac{x\left(x-2\right)}{-\left(x-4\right)}
Use the distributive property to multiply x by x-1.
\frac{x^{2}-4-x^{2}+x}{x\left(x-2\right)^{2}}\times \frac{x\left(x-2\right)}{-\left(x-4\right)}
To find the opposite of x^{2}-x, find the opposite of each term.
\frac{-4+x}{x\left(x-2\right)^{2}}\times \frac{x\left(x-2\right)}{-\left(x-4\right)}
Combine x^{2} and -x^{2} to get 0.
\frac{-4+x}{x\left(x-2\right)^{2}}\times \frac{x\left(x-2\right)}{-x+4}
To find the opposite of x-4, find the opposite of each term.
\frac{\left(-4+x\right)x\left(x-2\right)}{x\left(x-2\right)^{2}\left(-x+4\right)}
Multiply \frac{-4+x}{x\left(x-2\right)^{2}} times \frac{x\left(x-2\right)}{-x+4} by multiplying numerator times numerator and denominator times denominator.
\frac{-x\left(x-2\right)\left(-x+4\right)}{x\left(-x+4\right)\left(x-2\right)^{2}}
Extract the negative sign in -4+x.
\frac{-1}{x-2}
Cancel out x\left(x-2\right)\left(-x+4\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}