Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{329\times 3+329\times \left(4i\right)+190i\times 3+190\times 4i^{2}}{329+3+190i+4i}
Multiply complex numbers 329+190i and 3+4i like you multiply binomials.
\frac{329\times 3+329\times \left(4i\right)+190i\times 3+190\times 4\left(-1\right)}{329+3+190i+4i}
By definition, i^{2} is -1.
\frac{987+1316i+570i-760}{329+3+190i+4i}
Do the multiplications in 329\times 3+329\times \left(4i\right)+190i\times 3+190\times 4\left(-1\right).
\frac{987-760+\left(1316+570\right)i}{329+3+190i+4i}
Combine the real and imaginary parts in 987+1316i+570i-760.
\frac{227+1886i}{329+3+190i+4i}
Do the additions in 987-760+\left(1316+570\right)i.
\frac{227+1886i}{329+3+\left(190+4\right)i}
Combine the real and imaginary parts in 329+3+190i+4i.
\frac{227+1886i}{332+194i}
Do the additions in 329+3+\left(190+4\right)i.
\frac{\left(227+1886i\right)\left(332-194i\right)}{\left(332+194i\right)\left(332-194i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 332-194i.
\frac{\left(227+1886i\right)\left(332-194i\right)}{332^{2}-194^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(227+1886i\right)\left(332-194i\right)}{147860}
By definition, i^{2} is -1. Calculate the denominator.
\frac{227\times 332+227\times \left(-194i\right)+1886i\times 332+1886\left(-194\right)i^{2}}{147860}
Multiply complex numbers 227+1886i and 332-194i like you multiply binomials.
\frac{227\times 332+227\times \left(-194i\right)+1886i\times 332+1886\left(-194\right)\left(-1\right)}{147860}
By definition, i^{2} is -1.
\frac{75364-44038i+626152i+365884}{147860}
Do the multiplications in 227\times 332+227\times \left(-194i\right)+1886i\times 332+1886\left(-194\right)\left(-1\right).
\frac{75364+365884+\left(-44038+626152\right)i}{147860}
Combine the real and imaginary parts in 75364-44038i+626152i+365884.
\frac{441248+582114i}{147860}
Do the additions in 75364+365884+\left(-44038+626152\right)i.
\frac{110312}{36965}+\frac{291057}{73930}i
Divide 441248+582114i by 147860 to get \frac{110312}{36965}+\frac{291057}{73930}i.
Re(\frac{329\times 3+329\times \left(4i\right)+190i\times 3+190\times 4i^{2}}{329+3+190i+4i})
Multiply complex numbers 329+190i and 3+4i like you multiply binomials.
Re(\frac{329\times 3+329\times \left(4i\right)+190i\times 3+190\times 4\left(-1\right)}{329+3+190i+4i})
By definition, i^{2} is -1.
Re(\frac{987+1316i+570i-760}{329+3+190i+4i})
Do the multiplications in 329\times 3+329\times \left(4i\right)+190i\times 3+190\times 4\left(-1\right).
Re(\frac{987-760+\left(1316+570\right)i}{329+3+190i+4i})
Combine the real and imaginary parts in 987+1316i+570i-760.
Re(\frac{227+1886i}{329+3+190i+4i})
Do the additions in 987-760+\left(1316+570\right)i.
Re(\frac{227+1886i}{329+3+\left(190+4\right)i})
Combine the real and imaginary parts in 329+3+190i+4i.
Re(\frac{227+1886i}{332+194i})
Do the additions in 329+3+\left(190+4\right)i.
Re(\frac{\left(227+1886i\right)\left(332-194i\right)}{\left(332+194i\right)\left(332-194i\right)})
Multiply both numerator and denominator of \frac{227+1886i}{332+194i} by the complex conjugate of the denominator, 332-194i.
Re(\frac{\left(227+1886i\right)\left(332-194i\right)}{332^{2}-194^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(227+1886i\right)\left(332-194i\right)}{147860})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{227\times 332+227\times \left(-194i\right)+1886i\times 332+1886\left(-194\right)i^{2}}{147860})
Multiply complex numbers 227+1886i and 332-194i like you multiply binomials.
Re(\frac{227\times 332+227\times \left(-194i\right)+1886i\times 332+1886\left(-194\right)\left(-1\right)}{147860})
By definition, i^{2} is -1.
Re(\frac{75364-44038i+626152i+365884}{147860})
Do the multiplications in 227\times 332+227\times \left(-194i\right)+1886i\times 332+1886\left(-194\right)\left(-1\right).
Re(\frac{75364+365884+\left(-44038+626152\right)i}{147860})
Combine the real and imaginary parts in 75364-44038i+626152i+365884.
Re(\frac{441248+582114i}{147860})
Do the additions in 75364+365884+\left(-44038+626152\right)i.
Re(\frac{110312}{36965}+\frac{291057}{73930}i)
Divide 441248+582114i by 147860 to get \frac{110312}{36965}+\frac{291057}{73930}i.
\frac{110312}{36965}
The real part of \frac{110312}{36965}+\frac{291057}{73930}i is \frac{110312}{36965}.