Evaluate
\frac{6097}{1422}\approx 4.287623066
Factor
\frac{7 \cdot 13 \cdot 67}{2 \cdot 79 \cdot 3 ^ {2}} = 4\frac{409}{1422} = 4.287623066104079
Share
Copied to clipboard
\frac{\left(2.5-\frac{75}{50}\right)\times 0.5}{\frac{2-1.8}{0.4}}+\frac{\left(\frac{6\times 3+5}{3}-\frac{3\times 14+3}{14}\right)\times \frac{5\times 6+5}{6}}{\frac{21-1.25}{2.5}}
Expand \frac{7.5}{5} by multiplying both numerator and the denominator by 10.
\frac{\left(2.5-\frac{3}{2}\right)\times 0.5}{\frac{2-1.8}{0.4}}+\frac{\left(\frac{6\times 3+5}{3}-\frac{3\times 14+3}{14}\right)\times \frac{5\times 6+5}{6}}{\frac{21-1.25}{2.5}}
Reduce the fraction \frac{75}{50} to lowest terms by extracting and canceling out 25.
\frac{\left(\frac{5}{2}-\frac{3}{2}\right)\times 0.5}{\frac{2-1.8}{0.4}}+\frac{\left(\frac{6\times 3+5}{3}-\frac{3\times 14+3}{14}\right)\times \frac{5\times 6+5}{6}}{\frac{21-1.25}{2.5}}
Convert decimal number 2.5 to fraction \frac{25}{10}. Reduce the fraction \frac{25}{10} to lowest terms by extracting and canceling out 5.
\frac{\frac{5-3}{2}\times 0.5}{\frac{2-1.8}{0.4}}+\frac{\left(\frac{6\times 3+5}{3}-\frac{3\times 14+3}{14}\right)\times \frac{5\times 6+5}{6}}{\frac{21-1.25}{2.5}}
Since \frac{5}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2}{2}\times 0.5}{\frac{2-1.8}{0.4}}+\frac{\left(\frac{6\times 3+5}{3}-\frac{3\times 14+3}{14}\right)\times \frac{5\times 6+5}{6}}{\frac{21-1.25}{2.5}}
Subtract 3 from 5 to get 2.
\frac{1\times 0.5}{\frac{2-1.8}{0.4}}+\frac{\left(\frac{6\times 3+5}{3}-\frac{3\times 14+3}{14}\right)\times \frac{5\times 6+5}{6}}{\frac{21-1.25}{2.5}}
Divide 2 by 2 to get 1.
\frac{0.5}{\frac{2-1.8}{0.4}}+\frac{\left(\frac{6\times 3+5}{3}-\frac{3\times 14+3}{14}\right)\times \frac{5\times 6+5}{6}}{\frac{21-1.25}{2.5}}
Multiply 1 and 0.5 to get 0.5.
\frac{0.5}{\frac{0.2}{0.4}}+\frac{\left(\frac{6\times 3+5}{3}-\frac{3\times 14+3}{14}\right)\times \frac{5\times 6+5}{6}}{\frac{21-1.25}{2.5}}
Subtract 1.8 from 2 to get 0.2.
\frac{0.5}{\frac{2}{4}}+\frac{\left(\frac{6\times 3+5}{3}-\frac{3\times 14+3}{14}\right)\times \frac{5\times 6+5}{6}}{\frac{21-1.25}{2.5}}
Expand \frac{0.2}{0.4} by multiplying both numerator and the denominator by 10.
\frac{0.5}{\frac{1}{2}}+\frac{\left(\frac{6\times 3+5}{3}-\frac{3\times 14+3}{14}\right)\times \frac{5\times 6+5}{6}}{\frac{21-1.25}{2.5}}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
1+\frac{\left(\frac{6\times 3+5}{3}-\frac{3\times 14+3}{14}\right)\times \frac{5\times 6+5}{6}}{\frac{21-1.25}{2.5}}
Divide 0.5 by \frac{1}{2} to get 1.
1+\frac{\left(\frac{18+5}{3}-\frac{3\times 14+3}{14}\right)\times \frac{5\times 6+5}{6}}{\frac{21-1.25}{2.5}}
Multiply 6 and 3 to get 18.
1+\frac{\left(\frac{23}{3}-\frac{3\times 14+3}{14}\right)\times \frac{5\times 6+5}{6}}{\frac{21-1.25}{2.5}}
Add 18 and 5 to get 23.
1+\frac{\left(\frac{23}{3}-\frac{42+3}{14}\right)\times \frac{5\times 6+5}{6}}{\frac{21-1.25}{2.5}}
Multiply 3 and 14 to get 42.
1+\frac{\left(\frac{23}{3}-\frac{45}{14}\right)\times \frac{5\times 6+5}{6}}{\frac{21-1.25}{2.5}}
Add 42 and 3 to get 45.
1+\frac{\left(\frac{322}{42}-\frac{135}{42}\right)\times \frac{5\times 6+5}{6}}{\frac{21-1.25}{2.5}}
Least common multiple of 3 and 14 is 42. Convert \frac{23}{3} and \frac{45}{14} to fractions with denominator 42.
1+\frac{\frac{322-135}{42}\times \frac{5\times 6+5}{6}}{\frac{21-1.25}{2.5}}
Since \frac{322}{42} and \frac{135}{42} have the same denominator, subtract them by subtracting their numerators.
1+\frac{\frac{187}{42}\times \frac{5\times 6+5}{6}}{\frac{21-1.25}{2.5}}
Subtract 135 from 322 to get 187.
1+\frac{\frac{187}{42}\times \frac{30+5}{6}}{\frac{21-1.25}{2.5}}
Multiply 5 and 6 to get 30.
1+\frac{\frac{187}{42}\times \frac{35}{6}}{\frac{21-1.25}{2.5}}
Add 30 and 5 to get 35.
1+\frac{\frac{187\times 35}{42\times 6}}{\frac{21-1.25}{2.5}}
Multiply \frac{187}{42} times \frac{35}{6} by multiplying numerator times numerator and denominator times denominator.
1+\frac{\frac{6545}{252}}{\frac{21-1.25}{2.5}}
Do the multiplications in the fraction \frac{187\times 35}{42\times 6}.
1+\frac{\frac{935}{36}}{\frac{21-1.25}{2.5}}
Reduce the fraction \frac{6545}{252} to lowest terms by extracting and canceling out 7.
1+\frac{\frac{935}{36}}{\frac{19.75}{2.5}}
Subtract 1.25 from 21 to get 19.75.
1+\frac{\frac{935}{36}}{\frac{1975}{250}}
Expand \frac{19.75}{2.5} by multiplying both numerator and the denominator by 100.
1+\frac{\frac{935}{36}}{\frac{79}{10}}
Reduce the fraction \frac{1975}{250} to lowest terms by extracting and canceling out 25.
1+\frac{935}{36}\times \frac{10}{79}
Divide \frac{935}{36} by \frac{79}{10} by multiplying \frac{935}{36} by the reciprocal of \frac{79}{10}.
1+\frac{935\times 10}{36\times 79}
Multiply \frac{935}{36} times \frac{10}{79} by multiplying numerator times numerator and denominator times denominator.
1+\frac{9350}{2844}
Do the multiplications in the fraction \frac{935\times 10}{36\times 79}.
1+\frac{4675}{1422}
Reduce the fraction \frac{9350}{2844} to lowest terms by extracting and canceling out 2.
\frac{1422}{1422}+\frac{4675}{1422}
Convert 1 to fraction \frac{1422}{1422}.
\frac{1422+4675}{1422}
Since \frac{1422}{1422} and \frac{4675}{1422} have the same denominator, add them by adding their numerators.
\frac{6097}{1422}
Add 1422 and 4675 to get 6097.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}