Solve for x
x = \frac{\sqrt{4889} - 5}{8} \approx 8.115173053
x=\frac{-\sqrt{4889}-5}{8}\approx -9.365173053
Graph
Share
Copied to clipboard
\frac{\left(16+2\right)!}{\left(2\times 8\right)!}=4x^{2}+5x+2
Multiply 2 and 8 to get 16.
\frac{18!}{\left(2\times 8\right)!}=4x^{2}+5x+2
Add 16 and 2 to get 18.
\frac{6402373705728000}{\left(2\times 8\right)!}=4x^{2}+5x+2
The factorial of 18 is 6402373705728000.
\frac{6402373705728000}{16!}=4x^{2}+5x+2
Multiply 2 and 8 to get 16.
\frac{6402373705728000}{20922789888000}=4x^{2}+5x+2
The factorial of 16 is 20922789888000.
306=4x^{2}+5x+2
Divide 6402373705728000 by 20922789888000 to get 306.
4x^{2}+5x+2=306
Swap sides so that all variable terms are on the left hand side.
4x^{2}+5x+2-306=0
Subtract 306 from both sides.
4x^{2}+5x-304=0
Subtract 306 from 2 to get -304.
x=\frac{-5±\sqrt{5^{2}-4\times 4\left(-304\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 5 for b, and -304 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 4\left(-304\right)}}{2\times 4}
Square 5.
x=\frac{-5±\sqrt{25-16\left(-304\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-5±\sqrt{25+4864}}{2\times 4}
Multiply -16 times -304.
x=\frac{-5±\sqrt{4889}}{2\times 4}
Add 25 to 4864.
x=\frac{-5±\sqrt{4889}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{4889}-5}{8}
Now solve the equation x=\frac{-5±\sqrt{4889}}{8} when ± is plus. Add -5 to \sqrt{4889}.
x=\frac{-\sqrt{4889}-5}{8}
Now solve the equation x=\frac{-5±\sqrt{4889}}{8} when ± is minus. Subtract \sqrt{4889} from -5.
x=\frac{\sqrt{4889}-5}{8} x=\frac{-\sqrt{4889}-5}{8}
The equation is now solved.
\frac{\left(16+2\right)!}{\left(2\times 8\right)!}=4x^{2}+5x+2
Multiply 2 and 8 to get 16.
\frac{18!}{\left(2\times 8\right)!}=4x^{2}+5x+2
Add 16 and 2 to get 18.
\frac{6402373705728000}{\left(2\times 8\right)!}=4x^{2}+5x+2
The factorial of 18 is 6402373705728000.
\frac{6402373705728000}{16!}=4x^{2}+5x+2
Multiply 2 and 8 to get 16.
\frac{6402373705728000}{20922789888000}=4x^{2}+5x+2
The factorial of 16 is 20922789888000.
306=4x^{2}+5x+2
Divide 6402373705728000 by 20922789888000 to get 306.
4x^{2}+5x+2=306
Swap sides so that all variable terms are on the left hand side.
4x^{2}+5x=306-2
Subtract 2 from both sides.
4x^{2}+5x=304
Subtract 2 from 306 to get 304.
\frac{4x^{2}+5x}{4}=\frac{304}{4}
Divide both sides by 4.
x^{2}+\frac{5}{4}x=\frac{304}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{5}{4}x=76
Divide 304 by 4.
x^{2}+\frac{5}{4}x+\left(\frac{5}{8}\right)^{2}=76+\left(\frac{5}{8}\right)^{2}
Divide \frac{5}{4}, the coefficient of the x term, by 2 to get \frac{5}{8}. Then add the square of \frac{5}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{4}x+\frac{25}{64}=76+\frac{25}{64}
Square \frac{5}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{4889}{64}
Add 76 to \frac{25}{64}.
\left(x+\frac{5}{8}\right)^{2}=\frac{4889}{64}
Factor x^{2}+\frac{5}{4}x+\frac{25}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{8}\right)^{2}}=\sqrt{\frac{4889}{64}}
Take the square root of both sides of the equation.
x+\frac{5}{8}=\frac{\sqrt{4889}}{8} x+\frac{5}{8}=-\frac{\sqrt{4889}}{8}
Simplify.
x=\frac{\sqrt{4889}-5}{8} x=\frac{-\sqrt{4889}-5}{8}
Subtract \frac{5}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}