Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(12+2\right)!}{\left(2\times 6\right)!}=4x^{2}+5x+2
Multiply 2 and 6 to get 12.
\frac{14!}{\left(2\times 6\right)!}=4x^{2}+5x+2
Add 12 and 2 to get 14.
\frac{87178291200}{\left(2\times 6\right)!}=4x^{2}+5x+2
The factorial of 14 is 87178291200.
\frac{87178291200}{12!}=4x^{2}+5x+2
Multiply 2 and 6 to get 12.
\frac{87178291200}{479001600}=4x^{2}+5x+2
The factorial of 12 is 479001600.
182=4x^{2}+5x+2
Divide 87178291200 by 479001600 to get 182.
4x^{2}+5x+2=182
Swap sides so that all variable terms are on the left hand side.
4x^{2}+5x+2-182=0
Subtract 182 from both sides.
4x^{2}+5x-180=0
Subtract 182 from 2 to get -180.
x=\frac{-5±\sqrt{5^{2}-4\times 4\left(-180\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 5 for b, and -180 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 4\left(-180\right)}}{2\times 4}
Square 5.
x=\frac{-5±\sqrt{25-16\left(-180\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-5±\sqrt{25+2880}}{2\times 4}
Multiply -16 times -180.
x=\frac{-5±\sqrt{2905}}{2\times 4}
Add 25 to 2880.
x=\frac{-5±\sqrt{2905}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{2905}-5}{8}
Now solve the equation x=\frac{-5±\sqrt{2905}}{8} when ± is plus. Add -5 to \sqrt{2905}.
x=\frac{-\sqrt{2905}-5}{8}
Now solve the equation x=\frac{-5±\sqrt{2905}}{8} when ± is minus. Subtract \sqrt{2905} from -5.
x=\frac{\sqrt{2905}-5}{8} x=\frac{-\sqrt{2905}-5}{8}
The equation is now solved.
\frac{\left(12+2\right)!}{\left(2\times 6\right)!}=4x^{2}+5x+2
Multiply 2 and 6 to get 12.
\frac{14!}{\left(2\times 6\right)!}=4x^{2}+5x+2
Add 12 and 2 to get 14.
\frac{87178291200}{\left(2\times 6\right)!}=4x^{2}+5x+2
The factorial of 14 is 87178291200.
\frac{87178291200}{12!}=4x^{2}+5x+2
Multiply 2 and 6 to get 12.
\frac{87178291200}{479001600}=4x^{2}+5x+2
The factorial of 12 is 479001600.
182=4x^{2}+5x+2
Divide 87178291200 by 479001600 to get 182.
4x^{2}+5x+2=182
Swap sides so that all variable terms are on the left hand side.
4x^{2}+5x=182-2
Subtract 2 from both sides.
4x^{2}+5x=180
Subtract 2 from 182 to get 180.
\frac{4x^{2}+5x}{4}=\frac{180}{4}
Divide both sides by 4.
x^{2}+\frac{5}{4}x=\frac{180}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{5}{4}x=45
Divide 180 by 4.
x^{2}+\frac{5}{4}x+\left(\frac{5}{8}\right)^{2}=45+\left(\frac{5}{8}\right)^{2}
Divide \frac{5}{4}, the coefficient of the x term, by 2 to get \frac{5}{8}. Then add the square of \frac{5}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{4}x+\frac{25}{64}=45+\frac{25}{64}
Square \frac{5}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{2905}{64}
Add 45 to \frac{25}{64}.
\left(x+\frac{5}{8}\right)^{2}=\frac{2905}{64}
Factor x^{2}+\frac{5}{4}x+\frac{25}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{8}\right)^{2}}=\sqrt{\frac{2905}{64}}
Take the square root of both sides of the equation.
x+\frac{5}{8}=\frac{\sqrt{2905}}{8} x+\frac{5}{8}=-\frac{\sqrt{2905}}{8}
Simplify.
x=\frac{\sqrt{2905}-5}{8} x=\frac{-\sqrt{2905}-5}{8}
Subtract \frac{5}{8} from both sides of the equation.