Solve for x
x=20
Graph
Share
Copied to clipboard
\frac{40\times 400+\left(120-x-80\right)\left(500-400\right)}{80\times 500}=0.45
Subtract 80 from 120 to get 40.
\frac{16000+\left(120-x-80\right)\left(500-400\right)}{80\times 500}=0.45
Multiply 40 and 400 to get 16000.
\frac{16000+\left(40-x\right)\left(500-400\right)}{80\times 500}=0.45
Subtract 80 from 120 to get 40.
\frac{16000+\left(40-x\right)\times 100}{80\times 500}=0.45
Subtract 400 from 500 to get 100.
\frac{16000+\left(40-x\right)\times 100}{40000}=0.45
Multiply 80 and 500 to get 40000.
\frac{16000+4000-100x}{40000}=0.45
Use the distributive property to multiply 40-x by 100.
\frac{20000-100x}{40000}=0.45
Add 16000 and 4000 to get 20000.
\frac{1}{2}-\frac{1}{400}x=0.45
Divide each term of 20000-100x by 40000 to get \frac{1}{2}-\frac{1}{400}x.
-\frac{1}{400}x=0.45-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
-\frac{1}{400}x=\frac{9}{20}-\frac{1}{2}
Convert decimal number 0.45 to fraction \frac{45}{100}. Reduce the fraction \frac{45}{100} to lowest terms by extracting and canceling out 5.
-\frac{1}{400}x=\frac{9}{20}-\frac{10}{20}
Least common multiple of 20 and 2 is 20. Convert \frac{9}{20} and \frac{1}{2} to fractions with denominator 20.
-\frac{1}{400}x=\frac{9-10}{20}
Since \frac{9}{20} and \frac{10}{20} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{400}x=-\frac{1}{20}
Subtract 10 from 9 to get -1.
x=-\frac{1}{20}\left(-400\right)
Multiply both sides by -400, the reciprocal of -\frac{1}{400}.
x=\frac{-\left(-400\right)}{20}
Express -\frac{1}{20}\left(-400\right) as a single fraction.
x=\frac{400}{20}
Multiply -1 and -400 to get 400.
x=20
Divide 400 by 20 to get 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}