Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{40\times 400+\left(120-x-80\right)\left(500-400\right)}{80\times 500}=0.45
Subtract 80 from 120 to get 40.
\frac{16000+\left(120-x-80\right)\left(500-400\right)}{80\times 500}=0.45
Multiply 40 and 400 to get 16000.
\frac{16000+\left(40-x\right)\left(500-400\right)}{80\times 500}=0.45
Subtract 80 from 120 to get 40.
\frac{16000+\left(40-x\right)\times 100}{80\times 500}=0.45
Subtract 400 from 500 to get 100.
\frac{16000+\left(40-x\right)\times 100}{40000}=0.45
Multiply 80 and 500 to get 40000.
\frac{16000+4000-100x}{40000}=0.45
Use the distributive property to multiply 40-x by 100.
\frac{20000-100x}{40000}=0.45
Add 16000 and 4000 to get 20000.
\frac{1}{2}-\frac{1}{400}x=0.45
Divide each term of 20000-100x by 40000 to get \frac{1}{2}-\frac{1}{400}x.
-\frac{1}{400}x=0.45-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
-\frac{1}{400}x=\frac{9}{20}-\frac{1}{2}
Convert decimal number 0.45 to fraction \frac{45}{100}. Reduce the fraction \frac{45}{100} to lowest terms by extracting and canceling out 5.
-\frac{1}{400}x=\frac{9}{20}-\frac{10}{20}
Least common multiple of 20 and 2 is 20. Convert \frac{9}{20} and \frac{1}{2} to fractions with denominator 20.
-\frac{1}{400}x=\frac{9-10}{20}
Since \frac{9}{20} and \frac{10}{20} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{400}x=-\frac{1}{20}
Subtract 10 from 9 to get -1.
x=-\frac{1}{20}\left(-400\right)
Multiply both sides by -400, the reciprocal of -\frac{1}{400}.
x=\frac{-\left(-400\right)}{20}
Express -\frac{1}{20}\left(-400\right) as a single fraction.
x=\frac{400}{20}
Multiply -1 and -400 to get 400.
x=20
Divide 400 by 20 to get 20.