Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{10\times 10-10i\times 10}{20-11i}
Multiply 10-10i times 10.
\frac{100-100i}{20-11i}
Do the multiplications in 10\times 10-10i\times 10.
\frac{\left(100-100i\right)\left(20+11i\right)}{\left(20-11i\right)\left(20+11i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 20+11i.
\frac{\left(100-100i\right)\left(20+11i\right)}{20^{2}-11^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(100-100i\right)\left(20+11i\right)}{521}
By definition, i^{2} is -1. Calculate the denominator.
\frac{100\times 20+100\times \left(11i\right)-100i\times 20-100\times 11i^{2}}{521}
Multiply complex numbers 100-100i and 20+11i like you multiply binomials.
\frac{100\times 20+100\times \left(11i\right)-100i\times 20-100\times 11\left(-1\right)}{521}
By definition, i^{2} is -1.
\frac{2000+1100i-2000i+1100}{521}
Do the multiplications in 100\times 20+100\times \left(11i\right)-100i\times 20-100\times 11\left(-1\right).
\frac{2000+1100+\left(1100-2000\right)i}{521}
Combine the real and imaginary parts in 2000+1100i-2000i+1100.
\frac{3100-900i}{521}
Do the additions in 2000+1100+\left(1100-2000\right)i.
\frac{3100}{521}-\frac{900}{521}i
Divide 3100-900i by 521 to get \frac{3100}{521}-\frac{900}{521}i.
Re(\frac{10\times 10-10i\times 10}{20-11i})
Multiply 10-10i times 10.
Re(\frac{100-100i}{20-11i})
Do the multiplications in 10\times 10-10i\times 10.
Re(\frac{\left(100-100i\right)\left(20+11i\right)}{\left(20-11i\right)\left(20+11i\right)})
Multiply both numerator and denominator of \frac{100-100i}{20-11i} by the complex conjugate of the denominator, 20+11i.
Re(\frac{\left(100-100i\right)\left(20+11i\right)}{20^{2}-11^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(100-100i\right)\left(20+11i\right)}{521})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{100\times 20+100\times \left(11i\right)-100i\times 20-100\times 11i^{2}}{521})
Multiply complex numbers 100-100i and 20+11i like you multiply binomials.
Re(\frac{100\times 20+100\times \left(11i\right)-100i\times 20-100\times 11\left(-1\right)}{521})
By definition, i^{2} is -1.
Re(\frac{2000+1100i-2000i+1100}{521})
Do the multiplications in 100\times 20+100\times \left(11i\right)-100i\times 20-100\times 11\left(-1\right).
Re(\frac{2000+1100+\left(1100-2000\right)i}{521})
Combine the real and imaginary parts in 2000+1100i-2000i+1100.
Re(\frac{3100-900i}{521})
Do the additions in 2000+1100+\left(1100-2000\right)i.
Re(\frac{3100}{521}-\frac{900}{521}i)
Divide 3100-900i by 521 to get \frac{3100}{521}-\frac{900}{521}i.
\frac{3100}{521}
The real part of \frac{3100}{521}-\frac{900}{521}i is \frac{3100}{521}.