Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1\times 1+1\times \left(2i\right)-i-2i^{2}}{1+i}
Multiply complex numbers 1-i and 1+2i like you multiply binomials.
\frac{1\times 1+1\times \left(2i\right)-i-2\left(-1\right)}{1+i}
By definition, i^{2} is -1.
\frac{1+2i-i+2}{1+i}
Do the multiplications in 1\times 1+1\times \left(2i\right)-i-2\left(-1\right).
\frac{1+2+\left(2-1\right)i}{1+i}
Combine the real and imaginary parts in 1+2i-i+2.
\frac{3+i}{1+i}
Do the additions in 1+2+\left(2-1\right)i.
\frac{\left(3+i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-i.
\frac{\left(3+i\right)\left(1-i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+i\right)\left(1-i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\times 1+3\left(-i\right)+i-i^{2}}{2}
Multiply complex numbers 3+i and 1-i like you multiply binomials.
\frac{3\times 1+3\left(-i\right)+i-\left(-1\right)}{2}
By definition, i^{2} is -1.
\frac{3-3i+i+1}{2}
Do the multiplications in 3\times 1+3\left(-i\right)+i-\left(-1\right).
\frac{3+1+\left(-3+1\right)i}{2}
Combine the real and imaginary parts in 3-3i+i+1.
\frac{4-2i}{2}
Do the additions in 3+1+\left(-3+1\right)i.
2-i
Divide 4-2i by 2 to get 2-i.
Re(\frac{1\times 1+1\times \left(2i\right)-i-2i^{2}}{1+i})
Multiply complex numbers 1-i and 1+2i like you multiply binomials.
Re(\frac{1\times 1+1\times \left(2i\right)-i-2\left(-1\right)}{1+i})
By definition, i^{2} is -1.
Re(\frac{1+2i-i+2}{1+i})
Do the multiplications in 1\times 1+1\times \left(2i\right)-i-2\left(-1\right).
Re(\frac{1+2+\left(2-1\right)i}{1+i})
Combine the real and imaginary parts in 1+2i-i+2.
Re(\frac{3+i}{1+i})
Do the additions in 1+2+\left(2-1\right)i.
Re(\frac{\left(3+i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{3+i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{\left(3+i\right)\left(1-i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+i\right)\left(1-i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\times 1+3\left(-i\right)+i-i^{2}}{2})
Multiply complex numbers 3+i and 1-i like you multiply binomials.
Re(\frac{3\times 1+3\left(-i\right)+i-\left(-1\right)}{2})
By definition, i^{2} is -1.
Re(\frac{3-3i+i+1}{2})
Do the multiplications in 3\times 1+3\left(-i\right)+i-\left(-1\right).
Re(\frac{3+1+\left(-3+1\right)i}{2})
Combine the real and imaginary parts in 3-3i+i+1.
Re(\frac{4-2i}{2})
Do the additions in 3+1+\left(-3+1\right)i.
Re(2-i)
Divide 4-2i by 2 to get 2-i.
2
The real part of 2-i is 2.