Evaluate
2-i
Real Part
2
Quiz
Complex Number
5 problems similar to:
\frac{ (1- \texttt{i} )(1+2 \texttt{i} ) }{ (1+ \texttt{i} ) }
Share
Copied to clipboard
\frac{1\times 1+1\times \left(2i\right)-i-2i^{2}}{1+i}
Multiply complex numbers 1-i and 1+2i like you multiply binomials.
\frac{1\times 1+1\times \left(2i\right)-i-2\left(-1\right)}{1+i}
By definition, i^{2} is -1.
\frac{1+2i-i+2}{1+i}
Do the multiplications in 1\times 1+1\times \left(2i\right)-i-2\left(-1\right).
\frac{1+2+\left(2-1\right)i}{1+i}
Combine the real and imaginary parts in 1+2i-i+2.
\frac{3+i}{1+i}
Do the additions in 1+2+\left(2-1\right)i.
\frac{\left(3+i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-i.
\frac{\left(3+i\right)\left(1-i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+i\right)\left(1-i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\times 1+3\left(-i\right)+i-i^{2}}{2}
Multiply complex numbers 3+i and 1-i like you multiply binomials.
\frac{3\times 1+3\left(-i\right)+i-\left(-1\right)}{2}
By definition, i^{2} is -1.
\frac{3-3i+i+1}{2}
Do the multiplications in 3\times 1+3\left(-i\right)+i-\left(-1\right).
\frac{3+1+\left(-3+1\right)i}{2}
Combine the real and imaginary parts in 3-3i+i+1.
\frac{4-2i}{2}
Do the additions in 3+1+\left(-3+1\right)i.
2-i
Divide 4-2i by 2 to get 2-i.
Re(\frac{1\times 1+1\times \left(2i\right)-i-2i^{2}}{1+i})
Multiply complex numbers 1-i and 1+2i like you multiply binomials.
Re(\frac{1\times 1+1\times \left(2i\right)-i-2\left(-1\right)}{1+i})
By definition, i^{2} is -1.
Re(\frac{1+2i-i+2}{1+i})
Do the multiplications in 1\times 1+1\times \left(2i\right)-i-2\left(-1\right).
Re(\frac{1+2+\left(2-1\right)i}{1+i})
Combine the real and imaginary parts in 1+2i-i+2.
Re(\frac{3+i}{1+i})
Do the additions in 1+2+\left(2-1\right)i.
Re(\frac{\left(3+i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{3+i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{\left(3+i\right)\left(1-i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+i\right)\left(1-i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\times 1+3\left(-i\right)+i-i^{2}}{2})
Multiply complex numbers 3+i and 1-i like you multiply binomials.
Re(\frac{3\times 1+3\left(-i\right)+i-\left(-1\right)}{2})
By definition, i^{2} is -1.
Re(\frac{3-3i+i+1}{2})
Do the multiplications in 3\times 1+3\left(-i\right)+i-\left(-1\right).
Re(\frac{3+1+\left(-3+1\right)i}{2})
Combine the real and imaginary parts in 3-3i+i+1.
Re(\frac{4-2i}{2})
Do the additions in 3+1+\left(-3+1\right)i.
Re(2-i)
Divide 4-2i by 2 to get 2-i.
2
The real part of 2-i is 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}