Evaluate
\frac{11}{13}\approx 0.846153846
Factor
\frac{11}{13} = 0.8461538461538461
Share
Copied to clipboard
\frac{\left(\frac{3}{3}+\frac{1}{3}\right)\left(\frac{1}{2}+\frac{1}{3}\right)}{1+\frac{1}{3}+\frac{1}{2}+\frac{1}{3}}+\frac{1}{3}
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{3+1}{3}\left(\frac{1}{2}+\frac{1}{3}\right)}{1+\frac{1}{3}+\frac{1}{2}+\frac{1}{3}}+\frac{1}{3}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{4}{3}\left(\frac{1}{2}+\frac{1}{3}\right)}{1+\frac{1}{3}+\frac{1}{2}+\frac{1}{3}}+\frac{1}{3}
Add 3 and 1 to get 4.
\frac{\frac{4}{3}\left(\frac{3}{6}+\frac{2}{6}\right)}{1+\frac{1}{3}+\frac{1}{2}+\frac{1}{3}}+\frac{1}{3}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{\frac{4}{3}\times \frac{3+2}{6}}{1+\frac{1}{3}+\frac{1}{2}+\frac{1}{3}}+\frac{1}{3}
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{4}{3}\times \frac{5}{6}}{1+\frac{1}{3}+\frac{1}{2}+\frac{1}{3}}+\frac{1}{3}
Add 3 and 2 to get 5.
\frac{\frac{4\times 5}{3\times 6}}{1+\frac{1}{3}+\frac{1}{2}+\frac{1}{3}}+\frac{1}{3}
Multiply \frac{4}{3} times \frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{20}{18}}{1+\frac{1}{3}+\frac{1}{2}+\frac{1}{3}}+\frac{1}{3}
Do the multiplications in the fraction \frac{4\times 5}{3\times 6}.
\frac{\frac{10}{9}}{1+\frac{1}{3}+\frac{1}{2}+\frac{1}{3}}+\frac{1}{3}
Reduce the fraction \frac{20}{18} to lowest terms by extracting and canceling out 2.
\frac{\frac{10}{9}}{\frac{3}{3}+\frac{1}{3}+\frac{1}{2}+\frac{1}{3}}+\frac{1}{3}
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{10}{9}}{\frac{3+1}{3}+\frac{1}{2}+\frac{1}{3}}+\frac{1}{3}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{10}{9}}{\frac{4}{3}+\frac{1}{2}+\frac{1}{3}}+\frac{1}{3}
Add 3 and 1 to get 4.
\frac{\frac{10}{9}}{\frac{8}{6}+\frac{3}{6}+\frac{1}{3}}+\frac{1}{3}
Least common multiple of 3 and 2 is 6. Convert \frac{4}{3} and \frac{1}{2} to fractions with denominator 6.
\frac{\frac{10}{9}}{\frac{8+3}{6}+\frac{1}{3}}+\frac{1}{3}
Since \frac{8}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{10}{9}}{\frac{11}{6}+\frac{1}{3}}+\frac{1}{3}
Add 8 and 3 to get 11.
\frac{\frac{10}{9}}{\frac{11}{6}+\frac{2}{6}}+\frac{1}{3}
Least common multiple of 6 and 3 is 6. Convert \frac{11}{6} and \frac{1}{3} to fractions with denominator 6.
\frac{\frac{10}{9}}{\frac{11+2}{6}}+\frac{1}{3}
Since \frac{11}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{10}{9}}{\frac{13}{6}}+\frac{1}{3}
Add 11 and 2 to get 13.
\frac{10}{9}\times \frac{6}{13}+\frac{1}{3}
Divide \frac{10}{9} by \frac{13}{6} by multiplying \frac{10}{9} by the reciprocal of \frac{13}{6}.
\frac{10\times 6}{9\times 13}+\frac{1}{3}
Multiply \frac{10}{9} times \frac{6}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{60}{117}+\frac{1}{3}
Do the multiplications in the fraction \frac{10\times 6}{9\times 13}.
\frac{20}{39}+\frac{1}{3}
Reduce the fraction \frac{60}{117} to lowest terms by extracting and canceling out 3.
\frac{20}{39}+\frac{13}{39}
Least common multiple of 39 and 3 is 39. Convert \frac{20}{39} and \frac{1}{3} to fractions with denominator 39.
\frac{20+13}{39}
Since \frac{20}{39} and \frac{13}{39} have the same denominator, add them by adding their numerators.
\frac{33}{39}
Add 20 and 13 to get 33.
\frac{11}{13}
Reduce the fraction \frac{33}{39} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}