Evaluate
-\frac{80\sqrt{7473}}{2491}\approx -2.776283107
Share
Copied to clipboard
\frac{-0.08}{\sqrt{\frac{0.47\left(1-0.47\right)}{300}}}
Subtract 0.47 from 0.39 to get -0.08.
\frac{-0.08}{\sqrt{\frac{0.47\times 0.53}{300}}}
Subtract 0.47 from 1 to get 0.53.
\frac{-0.08}{\sqrt{\frac{0.2491}{300}}}
Multiply 0.47 and 0.53 to get 0.2491.
\frac{-0.08}{\sqrt{\frac{2491}{3000000}}}
Expand \frac{0.2491}{300} by multiplying both numerator and the denominator by 10000.
\frac{-0.08}{\frac{\sqrt{2491}}{\sqrt{3000000}}}
Rewrite the square root of the division \sqrt{\frac{2491}{3000000}} as the division of square roots \frac{\sqrt{2491}}{\sqrt{3000000}}.
\frac{-0.08}{\frac{\sqrt{2491}}{1000\sqrt{3}}}
Factor 3000000=1000^{2}\times 3. Rewrite the square root of the product \sqrt{1000^{2}\times 3} as the product of square roots \sqrt{1000^{2}}\sqrt{3}. Take the square root of 1000^{2}.
\frac{-0.08}{\frac{\sqrt{2491}\sqrt{3}}{1000\left(\sqrt{3}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{2491}}{1000\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{-0.08}{\frac{\sqrt{2491}\sqrt{3}}{1000\times 3}}
The square of \sqrt{3} is 3.
\frac{-0.08}{\frac{\sqrt{7473}}{1000\times 3}}
To multiply \sqrt{2491} and \sqrt{3}, multiply the numbers under the square root.
\frac{-0.08}{\frac{\sqrt{7473}}{3000}}
Multiply 1000 and 3 to get 3000.
\frac{-0.08\times 3000}{\sqrt{7473}}
Divide -0.08 by \frac{\sqrt{7473}}{3000} by multiplying -0.08 by the reciprocal of \frac{\sqrt{7473}}{3000}.
\frac{-0.08\times 3000\sqrt{7473}}{\left(\sqrt{7473}\right)^{2}}
Rationalize the denominator of \frac{-0.08\times 3000}{\sqrt{7473}} by multiplying numerator and denominator by \sqrt{7473}.
\frac{-0.08\times 3000\sqrt{7473}}{7473}
The square of \sqrt{7473} is 7473.
\frac{-240\sqrt{7473}}{7473}
Multiply -0.08 and 3000 to get -240.
-\frac{80}{2491}\sqrt{7473}
Divide -240\sqrt{7473} by 7473 to get -\frac{80}{2491}\sqrt{7473}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}