Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}{2-\sqrt{3}}
Consider \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5-\left(\sqrt{3}\right)^{2}}{2-\sqrt{3}}
The square of \sqrt{5} is 5.
\frac{5-3}{2-\sqrt{3}}
The square of \sqrt{3} is 3.
\frac{2}{2-\sqrt{3}}
Subtract 3 from 5 to get 2.
\frac{2\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}
Rationalize the denominator of \frac{2}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
\frac{2\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(2+\sqrt{3}\right)}{4-3}
Square 2. Square \sqrt{3}.
\frac{2\left(2+\sqrt{3}\right)}{1}
Subtract 3 from 4 to get 1.
2\left(2+\sqrt{3}\right)
Anything divided by one gives itself.
4+2\sqrt{3}
Use the distributive property to multiply 2 by 2+\sqrt{3}.