Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\times 1
Divide \sqrt{3}+\sqrt{2} by \sqrt{3}+\sqrt{2} to get 1.
\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}\times 1
Rationalize the denominator of \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{2}.
\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}\times 1
Consider \left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{3-2}\times 1
Square \sqrt{3}. Square \sqrt{2}.
\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{1}\times 1
Subtract 2 from 3 to get 1.
\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\times 1
Anything divided by one gives itself.
\left(\sqrt{3}+\sqrt{2}\right)^{2}\times 1
Multiply \sqrt{3}+\sqrt{2} and \sqrt{3}+\sqrt{2} to get \left(\sqrt{3}+\sqrt{2}\right)^{2}.
\left(\left(\sqrt{3}\right)^{2}+2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)\times 1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+\sqrt{2}\right)^{2}.
\left(3+2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)\times 1
The square of \sqrt{3} is 3.
\left(3+2\sqrt{6}+\left(\sqrt{2}\right)^{2}\right)\times 1
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\left(3+2\sqrt{6}+2\right)\times 1
The square of \sqrt{2} is 2.
\left(5+2\sqrt{6}\right)\times 1
Add 3 and 2 to get 5.
5+2\sqrt{6}
Use the distributive property to multiply 5+2\sqrt{6} by 1.