Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{19}+5}{12+\sqrt{95}}
The square of \sqrt{5} is 5.
\frac{\left(\sqrt{19}+5\right)\left(12-\sqrt{95}\right)}{\left(12+\sqrt{95}\right)\left(12-\sqrt{95}\right)}
Rationalize the denominator of \frac{\sqrt{19}+5}{12+\sqrt{95}} by multiplying numerator and denominator by 12-\sqrt{95}.
\frac{\left(\sqrt{19}+5\right)\left(12-\sqrt{95}\right)}{12^{2}-\left(\sqrt{95}\right)^{2}}
Consider \left(12+\sqrt{95}\right)\left(12-\sqrt{95}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{19}+5\right)\left(12-\sqrt{95}\right)}{144-95}
Square 12. Square \sqrt{95}.
\frac{\left(\sqrt{19}+5\right)\left(12-\sqrt{95}\right)}{49}
Subtract 95 from 144 to get 49.
\frac{12\sqrt{19}-\sqrt{19}\sqrt{95}+60-5\sqrt{95}}{49}
Use the distributive property to multiply \sqrt{19}+5 by 12-\sqrt{95}.
\frac{12\sqrt{19}-\sqrt{19}\sqrt{19}\sqrt{5}+60-5\sqrt{95}}{49}
Factor 95=19\times 5. Rewrite the square root of the product \sqrt{19\times 5} as the product of square roots \sqrt{19}\sqrt{5}.
\frac{12\sqrt{19}-19\sqrt{5}+60-5\sqrt{95}}{49}
Multiply \sqrt{19} and \sqrt{19} to get 19.