\frac{ ( \sqrt{ 19 } + { \left( \sqrt{ 5 } \right) }^{ 2 } }{ 12+ \sqrt{ 95 } }
Evaluate
\frac{12\sqrt{19}+60-5\sqrt{95}-19\sqrt{5}}{49}\approx 0.430357633
Share
Copied to clipboard
\frac{\sqrt{19}+5}{12+\sqrt{95}}
The square of \sqrt{5} is 5.
\frac{\left(\sqrt{19}+5\right)\left(12-\sqrt{95}\right)}{\left(12+\sqrt{95}\right)\left(12-\sqrt{95}\right)}
Rationalize the denominator of \frac{\sqrt{19}+5}{12+\sqrt{95}} by multiplying numerator and denominator by 12-\sqrt{95}.
\frac{\left(\sqrt{19}+5\right)\left(12-\sqrt{95}\right)}{12^{2}-\left(\sqrt{95}\right)^{2}}
Consider \left(12+\sqrt{95}\right)\left(12-\sqrt{95}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{19}+5\right)\left(12-\sqrt{95}\right)}{144-95}
Square 12. Square \sqrt{95}.
\frac{\left(\sqrt{19}+5\right)\left(12-\sqrt{95}\right)}{49}
Subtract 95 from 144 to get 49.
\frac{12\sqrt{19}-\sqrt{19}\sqrt{95}+60-5\sqrt{95}}{49}
Use the distributive property to multiply \sqrt{19}+5 by 12-\sqrt{95}.
\frac{12\sqrt{19}-\sqrt{19}\sqrt{19}\sqrt{5}+60-5\sqrt{95}}{49}
Factor 95=19\times 5. Rewrite the square root of the product \sqrt{19\times 5} as the product of square roots \sqrt{19}\sqrt{5}.
\frac{12\sqrt{19}-19\sqrt{5}+60-5\sqrt{95}}{49}
Multiply \sqrt{19} and \sqrt{19} to get 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}