Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{\frac{\left(\frac{68}{12}-\frac{21}{12}\right)\times \frac{3}{2}+\frac{5}{4}}{\left(\frac{11}{18}+\frac{5}{12}+\frac{7}{24}\right)\times \frac{24}{25}}}{-\left(2+\frac{5}{2}-\frac{3}{4}\right)}
Least common multiple of 3 and 4 is 12. Convert \frac{17}{3} and \frac{7}{4} to fractions with denominator 12.
\frac{\frac{\frac{68-21}{12}\times \frac{3}{2}+\frac{5}{4}}{\left(\frac{11}{18}+\frac{5}{12}+\frac{7}{24}\right)\times \frac{24}{25}}}{-\left(2+\frac{5}{2}-\frac{3}{4}\right)}
Since \frac{68}{12} and \frac{21}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\frac{47}{12}\times \frac{3}{2}+\frac{5}{4}}{\left(\frac{11}{18}+\frac{5}{12}+\frac{7}{24}\right)\times \frac{24}{25}}}{-\left(2+\frac{5}{2}-\frac{3}{4}\right)}
Subtract 21 from 68 to get 47.
\frac{\frac{\frac{47\times 3}{12\times 2}+\frac{5}{4}}{\left(\frac{11}{18}+\frac{5}{12}+\frac{7}{24}\right)\times \frac{24}{25}}}{-\left(2+\frac{5}{2}-\frac{3}{4}\right)}
Multiply \frac{47}{12} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\frac{141}{24}+\frac{5}{4}}{\left(\frac{11}{18}+\frac{5}{12}+\frac{7}{24}\right)\times \frac{24}{25}}}{-\left(2+\frac{5}{2}-\frac{3}{4}\right)}
Do the multiplications in the fraction \frac{47\times 3}{12\times 2}.
\frac{\frac{\frac{47}{8}+\frac{5}{4}}{\left(\frac{11}{18}+\frac{5}{12}+\frac{7}{24}\right)\times \frac{24}{25}}}{-\left(2+\frac{5}{2}-\frac{3}{4}\right)}
Reduce the fraction \frac{141}{24} to lowest terms by extracting and canceling out 3.
\frac{\frac{\frac{47}{8}+\frac{10}{8}}{\left(\frac{11}{18}+\frac{5}{12}+\frac{7}{24}\right)\times \frac{24}{25}}}{-\left(2+\frac{5}{2}-\frac{3}{4}\right)}
Least common multiple of 8 and 4 is 8. Convert \frac{47}{8} and \frac{5}{4} to fractions with denominator 8.
\frac{\frac{\frac{47+10}{8}}{\left(\frac{11}{18}+\frac{5}{12}+\frac{7}{24}\right)\times \frac{24}{25}}}{-\left(2+\frac{5}{2}-\frac{3}{4}\right)}
Since \frac{47}{8} and \frac{10}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{\frac{57}{8}}{\left(\frac{11}{18}+\frac{5}{12}+\frac{7}{24}\right)\times \frac{24}{25}}}{-\left(2+\frac{5}{2}-\frac{3}{4}\right)}
Add 47 and 10 to get 57.
\frac{\frac{\frac{57}{8}}{\left(\frac{22}{36}+\frac{15}{36}+\frac{7}{24}\right)\times \frac{24}{25}}}{-\left(2+\frac{5}{2}-\frac{3}{4}\right)}
Least common multiple of 18 and 12 is 36. Convert \frac{11}{18} and \frac{5}{12} to fractions with denominator 36.
\frac{\frac{\frac{57}{8}}{\left(\frac{22+15}{36}+\frac{7}{24}\right)\times \frac{24}{25}}}{-\left(2+\frac{5}{2}-\frac{3}{4}\right)}
Since \frac{22}{36} and \frac{15}{36} have the same denominator, add them by adding their numerators.
\frac{\frac{\frac{57}{8}}{\left(\frac{37}{36}+\frac{7}{24}\right)\times \frac{24}{25}}}{-\left(2+\frac{5}{2}-\frac{3}{4}\right)}
Add 22 and 15 to get 37.
\frac{\frac{\frac{57}{8}}{\left(\frac{74}{72}+\frac{21}{72}\right)\times \frac{24}{25}}}{-\left(2+\frac{5}{2}-\frac{3}{4}\right)}
Least common multiple of 36 and 24 is 72. Convert \frac{37}{36} and \frac{7}{24} to fractions with denominator 72.
\frac{\frac{\frac{57}{8}}{\frac{74+21}{72}\times \frac{24}{25}}}{-\left(2+\frac{5}{2}-\frac{3}{4}\right)}
Since \frac{74}{72} and \frac{21}{72} have the same denominator, add them by adding their numerators.
\frac{\frac{\frac{57}{8}}{\frac{95}{72}\times \frac{24}{25}}}{-\left(2+\frac{5}{2}-\frac{3}{4}\right)}
Add 74 and 21 to get 95.
\frac{\frac{\frac{57}{8}}{\frac{95\times 24}{72\times 25}}}{-\left(2+\frac{5}{2}-\frac{3}{4}\right)}
Multiply \frac{95}{72} times \frac{24}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\frac{57}{8}}{\frac{2280}{1800}}}{-\left(2+\frac{5}{2}-\frac{3}{4}\right)}
Do the multiplications in the fraction \frac{95\times 24}{72\times 25}.
\frac{\frac{\frac{57}{8}}{\frac{19}{15}}}{-\left(2+\frac{5}{2}-\frac{3}{4}\right)}
Reduce the fraction \frac{2280}{1800} to lowest terms by extracting and canceling out 120.
\frac{\frac{57}{8}\times \frac{15}{19}}{-\left(2+\frac{5}{2}-\frac{3}{4}\right)}
Divide \frac{57}{8} by \frac{19}{15} by multiplying \frac{57}{8} by the reciprocal of \frac{19}{15}.
\frac{\frac{57\times 15}{8\times 19}}{-\left(2+\frac{5}{2}-\frac{3}{4}\right)}
Multiply \frac{57}{8} times \frac{15}{19} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{855}{152}}{-\left(2+\frac{5}{2}-\frac{3}{4}\right)}
Do the multiplications in the fraction \frac{57\times 15}{8\times 19}.
\frac{\frac{45}{8}}{-\left(2+\frac{5}{2}-\frac{3}{4}\right)}
Reduce the fraction \frac{855}{152} to lowest terms by extracting and canceling out 19.
\frac{\frac{45}{8}}{-\left(\frac{4}{2}+\frac{5}{2}-\frac{3}{4}\right)}
Convert 2 to fraction \frac{4}{2}.
\frac{\frac{45}{8}}{-\left(\frac{4+5}{2}-\frac{3}{4}\right)}
Since \frac{4}{2} and \frac{5}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{45}{8}}{-\left(\frac{9}{2}-\frac{3}{4}\right)}
Add 4 and 5 to get 9.
\frac{\frac{45}{8}}{-\left(\frac{18}{4}-\frac{3}{4}\right)}
Least common multiple of 2 and 4 is 4. Convert \frac{9}{2} and \frac{3}{4} to fractions with denominator 4.
\frac{\frac{45}{8}}{-\frac{18-3}{4}}
Since \frac{18}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{45}{8}}{-\frac{15}{4}}
Subtract 3 from 18 to get 15.
\frac{45}{8}\left(-\frac{4}{15}\right)
Divide \frac{45}{8} by -\frac{15}{4} by multiplying \frac{45}{8} by the reciprocal of -\frac{15}{4}.
\frac{45\left(-4\right)}{8\times 15}
Multiply \frac{45}{8} times -\frac{4}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{-180}{120}
Do the multiplications in the fraction \frac{45\left(-4\right)}{8\times 15}.
-\frac{3}{2}
Reduce the fraction \frac{-180}{120} to lowest terms by extracting and canceling out 60.