Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(b^{2}-a^{2}\right)\left(b-2a-ab+2\right)}{\left(a^{2}-ab+b-a\right)\left(2a+2b\right)}
Divide \frac{b^{2}-a^{2}}{a^{2}-ab+b-a} by \frac{2a+2b}{b-2a-ab+2} by multiplying \frac{b^{2}-a^{2}}{a^{2}-ab+b-a} by the reciprocal of \frac{2a+2b}{b-2a-ab+2}.
\frac{\left(b+2\right)\left(-a+1\right)\left(a+b\right)\left(-a+b\right)}{2\left(a-1\right)\left(a+b\right)\left(a-b\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(a-1\right)\left(b+2\right)\left(a+b\right)\left(a-b\right)}{2\left(a-1\right)\left(a+b\right)\left(a-b\right)}
Extract the negative sign in 1-a. Extract the negative sign in b-a.
\frac{-\left(-1\right)\left(b+2\right)}{2}
Cancel out \left(a-1\right)\left(a+b\right)\left(a-b\right) in both numerator and denominator.
\frac{b+2}{2}
Expand the expression.
\frac{\left(b^{2}-a^{2}\right)\left(b-2a-ab+2\right)}{\left(a^{2}-ab+b-a\right)\left(2a+2b\right)}
Divide \frac{b^{2}-a^{2}}{a^{2}-ab+b-a} by \frac{2a+2b}{b-2a-ab+2} by multiplying \frac{b^{2}-a^{2}}{a^{2}-ab+b-a} by the reciprocal of \frac{2a+2b}{b-2a-ab+2}.
\frac{\left(b+2\right)\left(-a+1\right)\left(a+b\right)\left(-a+b\right)}{2\left(a-1\right)\left(a+b\right)\left(a-b\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(a-1\right)\left(b+2\right)\left(a+b\right)\left(a-b\right)}{2\left(a-1\right)\left(a+b\right)\left(a-b\right)}
Extract the negative sign in 1-a. Extract the negative sign in b-a.
\frac{-\left(-1\right)\left(b+2\right)}{2}
Cancel out \left(a-1\right)\left(a+b\right)\left(a-b\right) in both numerator and denominator.
\frac{b+2}{2}
Expand the expression.