Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(y^{2}-2y-15\right)\left(y^{2}-6y+9\right)}{\left(y^{2}-9\right)\left(12-4y\right)}
Divide \frac{y^{2}-2y-15}{y^{2}-9} by \frac{12-4y}{y^{2}-6y+9} by multiplying \frac{y^{2}-2y-15}{y^{2}-9} by the reciprocal of \frac{12-4y}{y^{2}-6y+9}.
\frac{\left(y-5\right)\left(y+3\right)\left(y-3\right)^{2}}{4\left(y-3\right)\left(y+3\right)\left(-y+3\right)}
Factor the expressions that are not already factored.
\frac{\left(y-5\right)\left(y-3\right)}{4\left(-y+3\right)}
Cancel out \left(y-3\right)\left(y+3\right) in both numerator and denominator.
\frac{-\left(y-5\right)\left(-y+3\right)}{4\left(-y+3\right)}
Extract the negative sign in -3+y.
\frac{-\left(y-5\right)}{4}
Cancel out -y+3 in both numerator and denominator.
\frac{-y+5}{4}
Expand the expression.
\frac{\left(y^{2}-2y-15\right)\left(y^{2}-6y+9\right)}{\left(y^{2}-9\right)\left(12-4y\right)}
Divide \frac{y^{2}-2y-15}{y^{2}-9} by \frac{12-4y}{y^{2}-6y+9} by multiplying \frac{y^{2}-2y-15}{y^{2}-9} by the reciprocal of \frac{12-4y}{y^{2}-6y+9}.
\frac{\left(y-5\right)\left(y+3\right)\left(y-3\right)^{2}}{4\left(y-3\right)\left(y+3\right)\left(-y+3\right)}
Factor the expressions that are not already factored.
\frac{\left(y-5\right)\left(y-3\right)}{4\left(-y+3\right)}
Cancel out \left(y-3\right)\left(y+3\right) in both numerator and denominator.
\frac{-\left(y-5\right)\left(-y+3\right)}{4\left(-y+3\right)}
Extract the negative sign in -3+y.
\frac{-\left(y-5\right)}{4}
Cancel out -y+3 in both numerator and denominator.
\frac{-y+5}{4}
Expand the expression.