Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image
Graph

Share

\frac{\frac{1}{y^{\frac{2}{7}}}}{\frac{y^{\frac{5}{3}}}{y^{\frac{9}{7}}}}y^{2}
Rewrite y^{\frac{5}{7}} as y^{\frac{3}{7}}y^{\frac{2}{7}}. Cancel out y^{\frac{3}{7}} in both numerator and denominator.
\frac{\frac{1}{y^{\frac{2}{7}}}}{y^{\frac{8}{21}}}y^{2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract \frac{9}{7} from \frac{5}{3} to get \frac{8}{21}.
\frac{1}{y^{\frac{2}{7}}y^{\frac{8}{21}}}y^{2}
Express \frac{\frac{1}{y^{\frac{2}{7}}}}{y^{\frac{8}{21}}} as a single fraction.
\frac{1}{y^{\frac{2}{3}}}y^{2}
To multiply powers of the same base, add their exponents. Add \frac{2}{7} and \frac{8}{21} to get \frac{2}{3}.
\frac{y^{2}}{y^{\frac{2}{3}}}
Use the rules of exponents to simplify the expression.
y^{2-\frac{2}{3}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
y^{\frac{4}{3}}
Subtract \frac{2}{3} from 2.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\frac{1}{y^{\frac{2}{7}}}}{\frac{y^{\frac{5}{3}}}{y^{\frac{9}{7}}}}y^{2})
Rewrite y^{\frac{5}{7}} as y^{\frac{3}{7}}y^{\frac{2}{7}}. Cancel out y^{\frac{3}{7}} in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\frac{1}{y^{\frac{2}{7}}}}{y^{\frac{8}{21}}}y^{2})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract \frac{9}{7} from \frac{5}{3} to get \frac{8}{21}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{y^{\frac{2}{7}}y^{\frac{8}{21}}}y^{2})
Express \frac{\frac{1}{y^{\frac{2}{7}}}}{y^{\frac{8}{21}}} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{y^{\frac{2}{3}}}y^{2})
To multiply powers of the same base, add their exponents. Add \frac{2}{7} and \frac{8}{21} to get \frac{2}{3}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{1}y^{2-\frac{2}{3}})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}y}(y^{\frac{4}{3}})
Do the arithmetic.
\frac{4}{3}y^{\frac{4}{3}-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{4}{3}\sqrt[3]{y}
Do the arithmetic.