Evaluate
-\frac{4x^{10}}{121}+\frac{x^{5}}{49}
Factor
\frac{x^{5}\left(121-196x^{5}\right)}{5929}
Graph
Share
Copied to clipboard
\frac{121x^{5}}{5929}-\frac{49\times 4x^{10}}{5929}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 49 and 121 is 5929. Multiply \frac{x^{5}}{49} times \frac{121}{121}. Multiply \frac{4x^{10}}{121} times \frac{49}{49}.
\frac{121x^{5}-49\times 4x^{10}}{5929}
Since \frac{121x^{5}}{5929} and \frac{49\times 4x^{10}}{5929} have the same denominator, subtract them by subtracting their numerators.
\frac{121x^{5}-196x^{10}}{5929}
Do the multiplications in 121x^{5}-49\times 4x^{10}.
\frac{121x^{5}-196x^{10}}{5929}
Factor out \frac{1}{5929}.
x^{5}\left(121-196x^{5}\right)
Consider 121x^{5}-196x^{10}. Factor out x^{5}.
\frac{x^{5}\left(121-196x^{5}\right)}{5929}
Rewrite the complete factored expression. Polynomial 121-196x^{5} is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}