Evaluate
\frac{x^{5}}{x^{2}+2}
Differentiate w.r.t. x
\frac{\left(3x^{2}+10\right)x^{4}}{\left(x^{2}+2\right)^{2}}
Graph
Share
Copied to clipboard
\frac{x^{4}\times 2x}{2\left(x^{2}+2\right)}
Multiply \frac{x^{4}}{2} times \frac{2x}{x^{2}+2} by multiplying numerator times numerator and denominator times denominator.
\frac{xx^{4}}{x^{2}+2}
Cancel out 2 in both numerator and denominator.
\frac{x^{5}}{x^{2}+2}
To multiply powers of the same base, add their exponents. Add 1 and 4 to get 5.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{4}\times 2x}{2\left(x^{2}+2\right)})
Multiply \frac{x^{4}}{2} times \frac{2x}{x^{2}+2} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{xx^{4}}{x^{2}+2})
Cancel out 2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{5}}{x^{2}+2})
To multiply powers of the same base, add their exponents. Add 1 and 4 to get 5.
\frac{\left(x^{2}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{5})-x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+2)}{\left(x^{2}+2\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(x^{2}+2\right)\times 5x^{5-1}-x^{5}\times 2x^{2-1}}{\left(x^{2}+2\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(x^{2}+2\right)\times 5x^{4}-x^{5}\times 2x^{1}}{\left(x^{2}+2\right)^{2}}
Do the arithmetic.
\frac{x^{2}\times 5x^{4}+2\times 5x^{4}-x^{5}\times 2x^{1}}{\left(x^{2}+2\right)^{2}}
Expand using distributive property.
\frac{5x^{2+4}+2\times 5x^{4}-2x^{5+1}}{\left(x^{2}+2\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{5x^{6}+10x^{4}-2x^{6}}{\left(x^{2}+2\right)^{2}}
Do the arithmetic.
\frac{\left(5-2\right)x^{6}+10x^{4}}{\left(x^{2}+2\right)^{2}}
Combine like terms.
\frac{3x^{6}+10x^{4}}{\left(x^{2}+2\right)^{2}}
Subtract 2 from 5.
\frac{x^{4}\left(3x^{2}+10x^{0}\right)}{\left(x^{2}+2\right)^{2}}
Factor out x^{4}.
\frac{x^{4}\left(3x^{2}+10\times 1\right)}{\left(x^{2}+2\right)^{2}}
For any term t except 0, t^{0}=1.
\frac{x^{4}\left(3x^{2}+10\right)}{\left(x^{2}+2\right)^{2}}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}