Factor
\frac{\left(3x-2y\right)\left(3x+2y\right)\left(9x^{2}+4y^{2}\right)}{1296}
Evaluate
\frac{x^{4}}{16}-\frac{y^{4}}{81}
Share
Copied to clipboard
\frac{81x^{4}-16y^{4}}{1296}
Factor out \frac{1}{1296}.
\left(9x^{2}-4y^{2}\right)\left(9x^{2}+4y^{2}\right)
Consider 81x^{4}-16y^{4}. Rewrite 81x^{4}-16y^{4} as \left(9x^{2}\right)^{2}-\left(4y^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(3x-2y\right)\left(3x+2y\right)
Consider 9x^{2}-4y^{2}. Rewrite 9x^{2}-4y^{2} as \left(3x\right)^{2}-\left(2y\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\frac{\left(3x-2y\right)\left(3x+2y\right)\left(9x^{2}+4y^{2}\right)}{1296}
Rewrite the complete factored expression.
\frac{81x^{4}}{1296}-\frac{16y^{4}}{1296}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 16 and 81 is 1296. Multiply \frac{x^{4}}{16} times \frac{81}{81}. Multiply \frac{y^{4}}{81} times \frac{16}{16}.
\frac{81x^{4}-16y^{4}}{1296}
Since \frac{81x^{4}}{1296} and \frac{16y^{4}}{1296} have the same denominator, subtract them by subtracting their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}