Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{81x^{4}-16y^{4}}{1296}
Factor out \frac{1}{1296}.
\left(9x^{2}-4y^{2}\right)\left(9x^{2}+4y^{2}\right)
Consider 81x^{4}-16y^{4}. Rewrite 81x^{4}-16y^{4} as \left(9x^{2}\right)^{2}-\left(4y^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(3x-2y\right)\left(3x+2y\right)
Consider 9x^{2}-4y^{2}. Rewrite 9x^{2}-4y^{2} as \left(3x\right)^{2}-\left(2y\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\frac{\left(3x-2y\right)\left(3x+2y\right)\left(9x^{2}+4y^{2}\right)}{1296}
Rewrite the complete factored expression.
\frac{81x^{4}}{1296}-\frac{16y^{4}}{1296}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 16 and 81 is 1296. Multiply \frac{x^{4}}{16} times \frac{81}{81}. Multiply \frac{y^{4}}{81} times \frac{16}{16}.
\frac{81x^{4}-16y^{4}}{1296}
Since \frac{81x^{4}}{1296} and \frac{16y^{4}}{1296} have the same denominator, subtract them by subtracting their numerators.