Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{3}-64}{\frac{\left(20x-100\right)\left(4x+16\right)}{x^{2}-9}}\times \frac{x^{2}-x-20}{x^{2}-x-12}
Express \frac{20x-100}{x^{2}-9}\left(4x+16\right) as a single fraction.
\frac{\left(x^{3}-64\right)\left(x^{2}-9\right)}{\left(20x-100\right)\left(4x+16\right)}\times \frac{x^{2}-x-20}{x^{2}-x-12}
Divide x^{3}-64 by \frac{\left(20x-100\right)\left(4x+16\right)}{x^{2}-9} by multiplying x^{3}-64 by the reciprocal of \frac{\left(20x-100\right)\left(4x+16\right)}{x^{2}-9}.
\frac{\left(x^{3}-64\right)\left(x^{2}-9\right)\left(x^{2}-x-20\right)}{\left(20x-100\right)\left(4x+16\right)\left(x^{2}-x-12\right)}
Multiply \frac{\left(x^{3}-64\right)\left(x^{2}-9\right)}{\left(20x-100\right)\left(4x+16\right)} times \frac{x^{2}-x-20}{x^{2}-x-12} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-5\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)\left(x+4\right)\left(x^{2}+4x+16\right)}{4\times 20\left(x-5\right)\left(x-4\right)\left(x+3\right)\left(x+4\right)}
Factor the expressions that are not already factored.
\frac{\left(x-3\right)\left(x^{2}+4x+16\right)}{4\times 20}
Cancel out \left(x-5\right)\left(x-4\right)\left(x+3\right)\left(x+4\right) in both numerator and denominator.
\frac{x^{3}+x^{2}+4x-48}{80}
Expand the expression.
\frac{x^{3}-64}{\frac{\left(20x-100\right)\left(4x+16\right)}{x^{2}-9}}\times \frac{x^{2}-x-20}{x^{2}-x-12}
Express \frac{20x-100}{x^{2}-9}\left(4x+16\right) as a single fraction.
\frac{\left(x^{3}-64\right)\left(x^{2}-9\right)}{\left(20x-100\right)\left(4x+16\right)}\times \frac{x^{2}-x-20}{x^{2}-x-12}
Divide x^{3}-64 by \frac{\left(20x-100\right)\left(4x+16\right)}{x^{2}-9} by multiplying x^{3}-64 by the reciprocal of \frac{\left(20x-100\right)\left(4x+16\right)}{x^{2}-9}.
\frac{\left(x^{3}-64\right)\left(x^{2}-9\right)\left(x^{2}-x-20\right)}{\left(20x-100\right)\left(4x+16\right)\left(x^{2}-x-12\right)}
Multiply \frac{\left(x^{3}-64\right)\left(x^{2}-9\right)}{\left(20x-100\right)\left(4x+16\right)} times \frac{x^{2}-x-20}{x^{2}-x-12} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-5\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)\left(x+4\right)\left(x^{2}+4x+16\right)}{4\times 20\left(x-5\right)\left(x-4\right)\left(x+3\right)\left(x+4\right)}
Factor the expressions that are not already factored.
\frac{\left(x-3\right)\left(x^{2}+4x+16\right)}{4\times 20}
Cancel out \left(x-5\right)\left(x-4\right)\left(x+3\right)\left(x+4\right) in both numerator and denominator.
\frac{x^{3}+x^{2}+4x-48}{80}
Expand the expression.