Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}-9}{\left(x^{2}+6x+9\right)\left(1-\frac{3}{x}\right)}
Express \frac{\frac{x^{2}-9}{x^{2}+6x+9}}{1-\frac{3}{x}} as a single fraction.
\frac{x^{2}-9}{\left(x^{2}+6x+9\right)\left(\frac{x}{x}-\frac{3}{x}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x}{x}.
\frac{x^{2}-9}{\left(x^{2}+6x+9\right)\times \frac{x-3}{x}}
Since \frac{x}{x} and \frac{3}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-9}{\frac{\left(x^{2}+6x+9\right)\left(x-3\right)}{x}}
Express \left(x^{2}+6x+9\right)\times \frac{x-3}{x} as a single fraction.
\frac{\left(x^{2}-9\right)x}{\left(x^{2}+6x+9\right)\left(x-3\right)}
Divide x^{2}-9 by \frac{\left(x^{2}+6x+9\right)\left(x-3\right)}{x} by multiplying x^{2}-9 by the reciprocal of \frac{\left(x^{2}+6x+9\right)\left(x-3\right)}{x}.
\frac{x\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)^{2}}
Factor the expressions that are not already factored.
\frac{x}{x+3}
Cancel out \left(x-3\right)\left(x+3\right) in both numerator and denominator.