Solve for x
x\neq -2
Graph
Share
Copied to clipboard
x^{2}-7x-18=\left(x+2\right)x+\left(x+2\right)\left(-9\right)
Variable x cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by x+2.
x^{2}-7x-18=x^{2}+2x+\left(x+2\right)\left(-9\right)
Use the distributive property to multiply x+2 by x.
x^{2}-7x-18=x^{2}+2x-9x-18
Use the distributive property to multiply x+2 by -9.
x^{2}-7x-18=x^{2}-7x-18
Combine 2x and -9x to get -7x.
x^{2}-7x-18-x^{2}=-7x-18
Subtract x^{2} from both sides.
-7x-18=-7x-18
Combine x^{2} and -x^{2} to get 0.
-7x-18+7x=-18
Add 7x to both sides.
-18=-18
Combine -7x and 7x to get 0.
\text{true}
Compare -18 and -18.
x\in \mathrm{R}
This is true for any x.
x\in \mathrm{R}\setminus -2
Variable x cannot be equal to -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}