Solve for x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Graph
Share
Copied to clipboard
x^{2}-4x+3=3x\left(x-3\right)+\left(x-3\right)\times 2
Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by x-3.
x^{2}-4x+3=3x^{2}-9x+\left(x-3\right)\times 2
Use the distributive property to multiply 3x by x-3.
x^{2}-4x+3=3x^{2}-9x+2x-6
Use the distributive property to multiply x-3 by 2.
x^{2}-4x+3=3x^{2}-7x-6
Combine -9x and 2x to get -7x.
x^{2}-4x+3-3x^{2}=-7x-6
Subtract 3x^{2} from both sides.
-2x^{2}-4x+3=-7x-6
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}-4x+3+7x=-6
Add 7x to both sides.
-2x^{2}+3x+3=-6
Combine -4x and 7x to get 3x.
-2x^{2}+3x+3+6=0
Add 6 to both sides.
-2x^{2}+3x+9=0
Add 3 and 6 to get 9.
a+b=3 ab=-2\times 9=-18
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -2x^{2}+ax+bx+9. To find a and b, set up a system to be solved.
-1,18 -2,9 -3,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -18.
-1+18=17 -2+9=7 -3+6=3
Calculate the sum for each pair.
a=6 b=-3
The solution is the pair that gives sum 3.
\left(-2x^{2}+6x\right)+\left(-3x+9\right)
Rewrite -2x^{2}+3x+9 as \left(-2x^{2}+6x\right)+\left(-3x+9\right).
2x\left(-x+3\right)+3\left(-x+3\right)
Factor out 2x in the first and 3 in the second group.
\left(-x+3\right)\left(2x+3\right)
Factor out common term -x+3 by using distributive property.
x=3 x=-\frac{3}{2}
To find equation solutions, solve -x+3=0 and 2x+3=0.
x=-\frac{3}{2}
Variable x cannot be equal to 3.
x^{2}-4x+3=3x\left(x-3\right)+\left(x-3\right)\times 2
Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by x-3.
x^{2}-4x+3=3x^{2}-9x+\left(x-3\right)\times 2
Use the distributive property to multiply 3x by x-3.
x^{2}-4x+3=3x^{2}-9x+2x-6
Use the distributive property to multiply x-3 by 2.
x^{2}-4x+3=3x^{2}-7x-6
Combine -9x and 2x to get -7x.
x^{2}-4x+3-3x^{2}=-7x-6
Subtract 3x^{2} from both sides.
-2x^{2}-4x+3=-7x-6
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}-4x+3+7x=-6
Add 7x to both sides.
-2x^{2}+3x+3=-6
Combine -4x and 7x to get 3x.
-2x^{2}+3x+3+6=0
Add 6 to both sides.
-2x^{2}+3x+9=0
Add 3 and 6 to get 9.
x=\frac{-3±\sqrt{3^{2}-4\left(-2\right)\times 9}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 3 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-2\right)\times 9}}{2\left(-2\right)}
Square 3.
x=\frac{-3±\sqrt{9+8\times 9}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-3±\sqrt{9+72}}{2\left(-2\right)}
Multiply 8 times 9.
x=\frac{-3±\sqrt{81}}{2\left(-2\right)}
Add 9 to 72.
x=\frac{-3±9}{2\left(-2\right)}
Take the square root of 81.
x=\frac{-3±9}{-4}
Multiply 2 times -2.
x=\frac{6}{-4}
Now solve the equation x=\frac{-3±9}{-4} when ± is plus. Add -3 to 9.
x=-\frac{3}{2}
Reduce the fraction \frac{6}{-4} to lowest terms by extracting and canceling out 2.
x=-\frac{12}{-4}
Now solve the equation x=\frac{-3±9}{-4} when ± is minus. Subtract 9 from -3.
x=3
Divide -12 by -4.
x=-\frac{3}{2} x=3
The equation is now solved.
x=-\frac{3}{2}
Variable x cannot be equal to 3.
x^{2}-4x+3=3x\left(x-3\right)+\left(x-3\right)\times 2
Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by x-3.
x^{2}-4x+3=3x^{2}-9x+\left(x-3\right)\times 2
Use the distributive property to multiply 3x by x-3.
x^{2}-4x+3=3x^{2}-9x+2x-6
Use the distributive property to multiply x-3 by 2.
x^{2}-4x+3=3x^{2}-7x-6
Combine -9x and 2x to get -7x.
x^{2}-4x+3-3x^{2}=-7x-6
Subtract 3x^{2} from both sides.
-2x^{2}-4x+3=-7x-6
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}-4x+3+7x=-6
Add 7x to both sides.
-2x^{2}+3x+3=-6
Combine -4x and 7x to get 3x.
-2x^{2}+3x=-6-3
Subtract 3 from both sides.
-2x^{2}+3x=-9
Subtract 3 from -6 to get -9.
\frac{-2x^{2}+3x}{-2}=-\frac{9}{-2}
Divide both sides by -2.
x^{2}+\frac{3}{-2}x=-\frac{9}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{3}{2}x=-\frac{9}{-2}
Divide 3 by -2.
x^{2}-\frac{3}{2}x=\frac{9}{2}
Divide -9 by -2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{9}{2}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{9}{2}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{81}{16}
Add \frac{9}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{4}\right)^{2}=\frac{81}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{9}{4} x-\frac{3}{4}=-\frac{9}{4}
Simplify.
x=3 x=-\frac{3}{2}
Add \frac{3}{4} to both sides of the equation.
x=-\frac{3}{2}
Variable x cannot be equal to 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}