Solve for y
\left\{\begin{matrix}y=\left(x+2\right)x^{2}\text{, }&x\neq -2\text{ and }x\neq 0\\y\neq 0\text{, }&x=3\end{matrix}\right.
Graph
Share
Copied to clipboard
x\left(x+2\right)\left(x^{2}-3x\right)=y\left(x-3\right)
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by xy\left(x+2\right), the least common multiple of y,x^{2}+2x.
\left(x^{2}+2x\right)\left(x^{2}-3x\right)=y\left(x-3\right)
Use the distributive property to multiply x by x+2.
x^{4}-x^{3}-6x^{2}=y\left(x-3\right)
Use the distributive property to multiply x^{2}+2x by x^{2}-3x and combine like terms.
x^{4}-x^{3}-6x^{2}=yx-3y
Use the distributive property to multiply y by x-3.
yx-3y=x^{4}-x^{3}-6x^{2}
Swap sides so that all variable terms are on the left hand side.
\left(x-3\right)y=x^{4}-x^{3}-6x^{2}
Combine all terms containing y.
\frac{\left(x-3\right)y}{x-3}=\frac{\left(x-3\right)\left(x+2\right)x^{2}}{x-3}
Divide both sides by -3+x.
y=\frac{\left(x-3\right)\left(x+2\right)x^{2}}{x-3}
Dividing by -3+x undoes the multiplication by -3+x.
y=\left(x+2\right)x^{2}
Divide \left(-3+x\right)\left(2+x\right)x^{2} by -3+x.
y=\left(x+2\right)x^{2}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}