Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}+8x-20}{x^{2}+390}+\frac{x^{2}+2x-3}{x^{2}+6\times 9}
Multiply 13 and 30 to get 390.
\frac{x^{2}+8x-20}{x^{2}+390}+\frac{x^{2}+2x-3}{x^{2}+54}
Multiply 6 and 9 to get 54.
\frac{\left(x^{2}+8x-20\right)\left(x^{2}+54\right)}{\left(x^{2}+54\right)\left(x^{2}+390\right)}+\frac{\left(x^{2}+2x-3\right)\left(x^{2}+390\right)}{\left(x^{2}+54\right)\left(x^{2}+390\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}+390 and x^{2}+54 is \left(x^{2}+54\right)\left(x^{2}+390\right). Multiply \frac{x^{2}+8x-20}{x^{2}+390} times \frac{x^{2}+54}{x^{2}+54}. Multiply \frac{x^{2}+2x-3}{x^{2}+54} times \frac{x^{2}+390}{x^{2}+390}.
\frac{\left(x^{2}+8x-20\right)\left(x^{2}+54\right)+\left(x^{2}+2x-3\right)\left(x^{2}+390\right)}{\left(x^{2}+54\right)\left(x^{2}+390\right)}
Since \frac{\left(x^{2}+8x-20\right)\left(x^{2}+54\right)}{\left(x^{2}+54\right)\left(x^{2}+390\right)} and \frac{\left(x^{2}+2x-3\right)\left(x^{2}+390\right)}{\left(x^{2}+54\right)\left(x^{2}+390\right)} have the same denominator, add them by adding their numerators.
\frac{x^{4}+54x^{2}+8x^{3}+432x-20x^{2}-1080+x^{4}+390x^{2}+2x^{3}+780x-3x^{2}-1170}{\left(x^{2}+54\right)\left(x^{2}+390\right)}
Do the multiplications in \left(x^{2}+8x-20\right)\left(x^{2}+54\right)+\left(x^{2}+2x-3\right)\left(x^{2}+390\right).
\frac{2x^{4}+421x^{2}+10x^{3}+1212x-2250}{\left(x^{2}+54\right)\left(x^{2}+390\right)}
Combine like terms in x^{4}+54x^{2}+8x^{3}+432x-20x^{2}-1080+x^{4}+390x^{2}+2x^{3}+780x-3x^{2}-1170.
\frac{2x^{4}+421x^{2}+10x^{3}+1212x-2250}{x^{4}+444x^{2}+21060}
Expand \left(x^{2}+54\right)\left(x^{2}+390\right).
\frac{x^{2}+8x-20}{x^{2}+390}+\frac{x^{2}+2x-3}{x^{2}+6\times 9}
Multiply 13 and 30 to get 390.
\frac{x^{2}+8x-20}{x^{2}+390}+\frac{x^{2}+2x-3}{x^{2}+54}
Multiply 6 and 9 to get 54.
\frac{\left(x^{2}+8x-20\right)\left(x^{2}+54\right)}{\left(x^{2}+54\right)\left(x^{2}+390\right)}+\frac{\left(x^{2}+2x-3\right)\left(x^{2}+390\right)}{\left(x^{2}+54\right)\left(x^{2}+390\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}+390 and x^{2}+54 is \left(x^{2}+54\right)\left(x^{2}+390\right). Multiply \frac{x^{2}+8x-20}{x^{2}+390} times \frac{x^{2}+54}{x^{2}+54}. Multiply \frac{x^{2}+2x-3}{x^{2}+54} times \frac{x^{2}+390}{x^{2}+390}.
\frac{\left(x^{2}+8x-20\right)\left(x^{2}+54\right)+\left(x^{2}+2x-3\right)\left(x^{2}+390\right)}{\left(x^{2}+54\right)\left(x^{2}+390\right)}
Since \frac{\left(x^{2}+8x-20\right)\left(x^{2}+54\right)}{\left(x^{2}+54\right)\left(x^{2}+390\right)} and \frac{\left(x^{2}+2x-3\right)\left(x^{2}+390\right)}{\left(x^{2}+54\right)\left(x^{2}+390\right)} have the same denominator, add them by adding their numerators.
\frac{x^{4}+54x^{2}+8x^{3}+432x-20x^{2}-1080+x^{4}+390x^{2}+2x^{3}+780x-3x^{2}-1170}{\left(x^{2}+54\right)\left(x^{2}+390\right)}
Do the multiplications in \left(x^{2}+8x-20\right)\left(x^{2}+54\right)+\left(x^{2}+2x-3\right)\left(x^{2}+390\right).
\frac{2x^{4}+421x^{2}+10x^{3}+1212x-2250}{\left(x^{2}+54\right)\left(x^{2}+390\right)}
Combine like terms in x^{4}+54x^{2}+8x^{3}+432x-20x^{2}-1080+x^{4}+390x^{2}+2x^{3}+780x-3x^{2}-1170.
\frac{2x^{4}+421x^{2}+10x^{3}+1212x-2250}{x^{4}+444x^{2}+21060}
Expand \left(x^{2}+54\right)\left(x^{2}+390\right).