Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x-3\right)\left(x+5\right)}{\left(x-3\right)\left(x+3\right)}\times \frac{x^{2}-6x+9}{12-4x}
Factor the expressions that are not already factored in \frac{x^{2}+2x-15}{x^{2}-9}.
\frac{x+5}{x+3}\times \frac{x^{2}-6x+9}{12-4x}
Cancel out x-3 in both numerator and denominator.
\frac{\left(x+5\right)\left(x^{2}-6x+9\right)}{\left(x+3\right)\left(12-4x\right)}
Multiply \frac{x+5}{x+3} times \frac{x^{2}-6x+9}{12-4x} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{3}-x^{2}-21x+45}{\left(x+3\right)\left(12-4x\right)}
Use the distributive property to multiply x+5 by x^{2}-6x+9 and combine like terms.
\frac{x^{3}-x^{2}-21x+45}{-4x^{2}+36}
Use the distributive property to multiply x+3 by 12-4x and combine like terms.
\frac{\left(x+5\right)\left(x-3\right)^{2}}{4\left(x-3\right)\left(-x-3\right)}
Factor the expressions that are not already factored.
\frac{\left(x-3\right)\left(x+5\right)}{4\left(-x-3\right)}
Cancel out x-3 in both numerator and denominator.
\frac{x^{2}+2x-15}{-4x-12}
Expand the expression.
\frac{\left(x-3\right)\left(x+5\right)}{\left(x-3\right)\left(x+3\right)}\times \frac{x^{2}-6x+9}{12-4x}
Factor the expressions that are not already factored in \frac{x^{2}+2x-15}{x^{2}-9}.
\frac{x+5}{x+3}\times \frac{x^{2}-6x+9}{12-4x}
Cancel out x-3 in both numerator and denominator.
\frac{\left(x+5\right)\left(x^{2}-6x+9\right)}{\left(x+3\right)\left(12-4x\right)}
Multiply \frac{x+5}{x+3} times \frac{x^{2}-6x+9}{12-4x} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{3}-x^{2}-21x+45}{\left(x+3\right)\left(12-4x\right)}
Use the distributive property to multiply x+5 by x^{2}-6x+9 and combine like terms.
\frac{x^{3}-x^{2}-21x+45}{-4x^{2}+36}
Use the distributive property to multiply x+3 by 12-4x and combine like terms.
\frac{\left(x+5\right)\left(x-3\right)^{2}}{4\left(x-3\right)\left(-x-3\right)}
Factor the expressions that are not already factored.
\frac{\left(x-3\right)\left(x+5\right)}{4\left(-x-3\right)}
Cancel out x-3 in both numerator and denominator.
\frac{x^{2}+2x-15}{-4x-12}
Expand the expression.