Solve for x
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
Graph
Quiz
Polynomial
5 problems similar to:
\frac{ { x }^{ 2 } }{ 5 } - \frac{ 2x }{ 3 } = \frac{ x-5 }{ 6 }
Share
Copied to clipboard
6x^{2}-10\times 2x=5\left(x-5\right)
Multiply both sides of the equation by 30, the least common multiple of 5,3,6.
6x^{2}-20x=5\left(x-5\right)
Multiply -10 and 2 to get -20.
6x^{2}-20x=5x-25
Use the distributive property to multiply 5 by x-5.
6x^{2}-20x-5x=-25
Subtract 5x from both sides.
6x^{2}-25x=-25
Combine -20x and -5x to get -25x.
6x^{2}-25x+25=0
Add 25 to both sides.
a+b=-25 ab=6\times 25=150
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 6x^{2}+ax+bx+25. To find a and b, set up a system to be solved.
-1,-150 -2,-75 -3,-50 -5,-30 -6,-25 -10,-15
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 150.
-1-150=-151 -2-75=-77 -3-50=-53 -5-30=-35 -6-25=-31 -10-15=-25
Calculate the sum for each pair.
a=-15 b=-10
The solution is the pair that gives sum -25.
\left(6x^{2}-15x\right)+\left(-10x+25\right)
Rewrite 6x^{2}-25x+25 as \left(6x^{2}-15x\right)+\left(-10x+25\right).
3x\left(2x-5\right)-5\left(2x-5\right)
Factor out 3x in the first and -5 in the second group.
\left(2x-5\right)\left(3x-5\right)
Factor out common term 2x-5 by using distributive property.
x=\frac{5}{2} x=\frac{5}{3}
To find equation solutions, solve 2x-5=0 and 3x-5=0.
6x^{2}-10\times 2x=5\left(x-5\right)
Multiply both sides of the equation by 30, the least common multiple of 5,3,6.
6x^{2}-20x=5\left(x-5\right)
Multiply -10 and 2 to get -20.
6x^{2}-20x=5x-25
Use the distributive property to multiply 5 by x-5.
6x^{2}-20x-5x=-25
Subtract 5x from both sides.
6x^{2}-25x=-25
Combine -20x and -5x to get -25x.
6x^{2}-25x+25=0
Add 25 to both sides.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 6\times 25}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -25 for b, and 25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 6\times 25}}{2\times 6}
Square -25.
x=\frac{-\left(-25\right)±\sqrt{625-24\times 25}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-25\right)±\sqrt{625-600}}{2\times 6}
Multiply -24 times 25.
x=\frac{-\left(-25\right)±\sqrt{25}}{2\times 6}
Add 625 to -600.
x=\frac{-\left(-25\right)±5}{2\times 6}
Take the square root of 25.
x=\frac{25±5}{2\times 6}
The opposite of -25 is 25.
x=\frac{25±5}{12}
Multiply 2 times 6.
x=\frac{30}{12}
Now solve the equation x=\frac{25±5}{12} when ± is plus. Add 25 to 5.
x=\frac{5}{2}
Reduce the fraction \frac{30}{12} to lowest terms by extracting and canceling out 6.
x=\frac{20}{12}
Now solve the equation x=\frac{25±5}{12} when ± is minus. Subtract 5 from 25.
x=\frac{5}{3}
Reduce the fraction \frac{20}{12} to lowest terms by extracting and canceling out 4.
x=\frac{5}{2} x=\frac{5}{3}
The equation is now solved.
6x^{2}-10\times 2x=5\left(x-5\right)
Multiply both sides of the equation by 30, the least common multiple of 5,3,6.
6x^{2}-20x=5\left(x-5\right)
Multiply -10 and 2 to get -20.
6x^{2}-20x=5x-25
Use the distributive property to multiply 5 by x-5.
6x^{2}-20x-5x=-25
Subtract 5x from both sides.
6x^{2}-25x=-25
Combine -20x and -5x to get -25x.
\frac{6x^{2}-25x}{6}=-\frac{25}{6}
Divide both sides by 6.
x^{2}-\frac{25}{6}x=-\frac{25}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{25}{6}x+\left(-\frac{25}{12}\right)^{2}=-\frac{25}{6}+\left(-\frac{25}{12}\right)^{2}
Divide -\frac{25}{6}, the coefficient of the x term, by 2 to get -\frac{25}{12}. Then add the square of -\frac{25}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{25}{6}x+\frac{625}{144}=-\frac{25}{6}+\frac{625}{144}
Square -\frac{25}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{25}{6}x+\frac{625}{144}=\frac{25}{144}
Add -\frac{25}{6} to \frac{625}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{25}{12}\right)^{2}=\frac{25}{144}
Factor x^{2}-\frac{25}{6}x+\frac{625}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{12}\right)^{2}}=\sqrt{\frac{25}{144}}
Take the square root of both sides of the equation.
x-\frac{25}{12}=\frac{5}{12} x-\frac{25}{12}=-\frac{5}{12}
Simplify.
x=\frac{5}{2} x=\frac{5}{3}
Add \frac{25}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}