Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

24x^{2}+49\left(25-x^{2}\right)=1176
Multiply both sides of the equation by 1176, the least common multiple of 49,24.
24x^{2}+1225-49x^{2}=1176
Use the distributive property to multiply 49 by 25-x^{2}.
-25x^{2}+1225=1176
Combine 24x^{2} and -49x^{2} to get -25x^{2}.
-25x^{2}=1176-1225
Subtract 1225 from both sides.
-25x^{2}=-49
Subtract 1225 from 1176 to get -49.
x^{2}=\frac{-49}{-25}
Divide both sides by -25.
x^{2}=\frac{49}{25}
Fraction \frac{-49}{-25} can be simplified to \frac{49}{25} by removing the negative sign from both the numerator and the denominator.
x=\frac{7}{5} x=-\frac{7}{5}
Take the square root of both sides of the equation.
24x^{2}+49\left(25-x^{2}\right)=1176
Multiply both sides of the equation by 1176, the least common multiple of 49,24.
24x^{2}+1225-49x^{2}=1176
Use the distributive property to multiply 49 by 25-x^{2}.
-25x^{2}+1225=1176
Combine 24x^{2} and -49x^{2} to get -25x^{2}.
-25x^{2}+1225-1176=0
Subtract 1176 from both sides.
-25x^{2}+49=0
Subtract 1176 from 1225 to get 49.
x=\frac{0±\sqrt{0^{2}-4\left(-25\right)\times 49}}{2\left(-25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -25 for a, 0 for b, and 49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-25\right)\times 49}}{2\left(-25\right)}
Square 0.
x=\frac{0±\sqrt{100\times 49}}{2\left(-25\right)}
Multiply -4 times -25.
x=\frac{0±\sqrt{4900}}{2\left(-25\right)}
Multiply 100 times 49.
x=\frac{0±70}{2\left(-25\right)}
Take the square root of 4900.
x=\frac{0±70}{-50}
Multiply 2 times -25.
x=-\frac{7}{5}
Now solve the equation x=\frac{0±70}{-50} when ± is plus. Reduce the fraction \frac{70}{-50} to lowest terms by extracting and canceling out 10.
x=\frac{7}{5}
Now solve the equation x=\frac{0±70}{-50} when ± is minus. Reduce the fraction \frac{-70}{-50} to lowest terms by extracting and canceling out 10.
x=-\frac{7}{5} x=\frac{7}{5}
The equation is now solved.