Solve for x
x = \frac{\sqrt{160221897609} - 10397}{25000} \approx 15.595211036
x=\frac{-\sqrt{160221897609}-10397}{25000}\approx -16.426971036
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac{ { x }^{ 2 } }{ 308-x } = 83176 \times { 10 }^{ -5 }
Share
Copied to clipboard
x^{2}=83176\times 10^{-5}\left(-x+308\right)
Variable x cannot be equal to 308 since division by zero is not defined. Multiply both sides of the equation by -x+308.
x^{2}=83176\times \frac{1}{100000}\left(-x+308\right)
Calculate 10 to the power of -5 and get \frac{1}{100000}.
x^{2}=\frac{10397}{12500}\left(-x+308\right)
Multiply 83176 and \frac{1}{100000} to get \frac{10397}{12500}.
x^{2}=-\frac{10397}{12500}x+\frac{800569}{3125}
Use the distributive property to multiply \frac{10397}{12500} by -x+308.
x^{2}+\frac{10397}{12500}x=\frac{800569}{3125}
Add \frac{10397}{12500}x to both sides.
x^{2}+\frac{10397}{12500}x-\frac{800569}{3125}=0
Subtract \frac{800569}{3125} from both sides.
x=\frac{-\frac{10397}{12500}±\sqrt{\left(\frac{10397}{12500}\right)^{2}-4\left(-\frac{800569}{3125}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{10397}{12500} for b, and -\frac{800569}{3125} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{10397}{12500}±\sqrt{\frac{108097609}{156250000}-4\left(-\frac{800569}{3125}\right)}}{2}
Square \frac{10397}{12500} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{10397}{12500}±\sqrt{\frac{108097609}{156250000}+\frac{3202276}{3125}}}{2}
Multiply -4 times -\frac{800569}{3125}.
x=\frac{-\frac{10397}{12500}±\sqrt{\frac{160221897609}{156250000}}}{2}
Add \frac{108097609}{156250000} to \frac{3202276}{3125} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{10397}{12500}±\frac{\sqrt{160221897609}}{12500}}{2}
Take the square root of \frac{160221897609}{156250000}.
x=\frac{\sqrt{160221897609}-10397}{2\times 12500}
Now solve the equation x=\frac{-\frac{10397}{12500}±\frac{\sqrt{160221897609}}{12500}}{2} when ± is plus. Add -\frac{10397}{12500} to \frac{\sqrt{160221897609}}{12500}.
x=\frac{\sqrt{160221897609}-10397}{25000}
Divide \frac{-10397+\sqrt{160221897609}}{12500} by 2.
x=\frac{-\sqrt{160221897609}-10397}{2\times 12500}
Now solve the equation x=\frac{-\frac{10397}{12500}±\frac{\sqrt{160221897609}}{12500}}{2} when ± is minus. Subtract \frac{\sqrt{160221897609}}{12500} from -\frac{10397}{12500}.
x=\frac{-\sqrt{160221897609}-10397}{25000}
Divide \frac{-10397-\sqrt{160221897609}}{12500} by 2.
x=\frac{\sqrt{160221897609}-10397}{25000} x=\frac{-\sqrt{160221897609}-10397}{25000}
The equation is now solved.
x^{2}=83176\times 10^{-5}\left(-x+308\right)
Variable x cannot be equal to 308 since division by zero is not defined. Multiply both sides of the equation by -x+308.
x^{2}=83176\times \frac{1}{100000}\left(-x+308\right)
Calculate 10 to the power of -5 and get \frac{1}{100000}.
x^{2}=\frac{10397}{12500}\left(-x+308\right)
Multiply 83176 and \frac{1}{100000} to get \frac{10397}{12500}.
x^{2}=-\frac{10397}{12500}x+\frac{800569}{3125}
Use the distributive property to multiply \frac{10397}{12500} by -x+308.
x^{2}+\frac{10397}{12500}x=\frac{800569}{3125}
Add \frac{10397}{12500}x to both sides.
x^{2}+\frac{10397}{12500}x+\left(\frac{10397}{25000}\right)^{2}=\frac{800569}{3125}+\left(\frac{10397}{25000}\right)^{2}
Divide \frac{10397}{12500}, the coefficient of the x term, by 2 to get \frac{10397}{25000}. Then add the square of \frac{10397}{25000} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000}=\frac{800569}{3125}+\frac{108097609}{625000000}
Square \frac{10397}{25000} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000}=\frac{160221897609}{625000000}
Add \frac{800569}{3125} to \frac{108097609}{625000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{10397}{25000}\right)^{2}=\frac{160221897609}{625000000}
Factor x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{10397}{25000}\right)^{2}}=\sqrt{\frac{160221897609}{625000000}}
Take the square root of both sides of the equation.
x+\frac{10397}{25000}=\frac{\sqrt{160221897609}}{25000} x+\frac{10397}{25000}=-\frac{\sqrt{160221897609}}{25000}
Simplify.
x=\frac{\sqrt{160221897609}-10397}{25000} x=\frac{-\sqrt{160221897609}-10397}{25000}
Subtract \frac{10397}{25000} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}