Evaluate
2x+1
Expand
2x+1
Graph
Share
Copied to clipboard
\frac{-x^{-6}\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)\left(4x^{2}+2x+1\right)}{x^{-2}\left(4x^{2}+2x+1\right)}\times \frac{x^{2}}{4-4x^{-1}+x^{-2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
Factor the expressions that are not already factored in \frac{x^{-6}-64}{4+2x^{-1}+x^{-2}}.
\frac{-x^{-6}\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)}{x^{-2}}\times \frac{x^{2}}{4-4x^{-1}+x^{-2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
Cancel out 4x^{2}+2x+1 in both numerator and denominator.
\frac{-\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)}{x^{4}}\times \frac{x^{2}}{4-4x^{-1}+x^{-2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{-\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)}{x^{4}}\times \frac{x^{2}}{x^{-2}\left(2x-1\right)^{2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
Factor the expressions that are not already factored in \frac{x^{2}}{4-4x^{-1}+x^{-2}}.
\frac{-\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)}{x^{4}}\times \frac{x^{4}}{\left(2x-1\right)^{2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{-\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)x^{4}}{x^{4}\left(2x-1\right)^{2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
Multiply \frac{-\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)}{x^{4}} times \frac{x^{4}}{\left(2x-1\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(2x+1\right)\left(4x^{2}-2x+1\right)}{2x-1}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
Cancel out \left(2x-1\right)x^{4} in both numerator and denominator.
\frac{-\left(2x+1\right)\left(4x^{2}-2x+1\right)}{2x-1}-\frac{8x^{3}+4x^{2}}{1-2x}
Use the distributive property to multiply 4x^{2} by 2x+1.
\frac{-\left(2x+1\right)\left(4x^{2}-2x+1\right)}{2x-1}-\frac{-\left(8x^{3}+4x^{2}\right)}{2x-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x-1 and 1-2x is 2x-1. Multiply \frac{8x^{3}+4x^{2}}{1-2x} times \frac{-1}{-1}.
\frac{-\left(2x+1\right)\left(4x^{2}-2x+1\right)-\left(-\left(8x^{3}+4x^{2}\right)\right)}{2x-1}
Since \frac{-\left(2x+1\right)\left(4x^{2}-2x+1\right)}{2x-1} and \frac{-\left(8x^{3}+4x^{2}\right)}{2x-1} have the same denominator, subtract them by subtracting their numerators.
\frac{-8x^{3}+4x^{2}-2x-4x^{2}+2x-1+8x^{3}+4x^{2}}{2x-1}
Do the multiplications in -\left(2x+1\right)\left(4x^{2}-2x+1\right)-\left(-\left(8x^{3}+4x^{2}\right)\right).
\frac{4x^{2}-1}{2x-1}
Combine like terms in -8x^{3}+4x^{2}-2x-4x^{2}+2x-1+8x^{3}+4x^{2}.
\frac{\left(2x-1\right)\left(2x+1\right)}{2x-1}
Factor the expressions that are not already factored in \frac{4x^{2}-1}{2x-1}.
2x+1
Cancel out 2x-1 in both numerator and denominator.
\frac{-x^{-6}\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)\left(4x^{2}+2x+1\right)}{x^{-2}\left(4x^{2}+2x+1\right)}\times \frac{x^{2}}{4-4x^{-1}+x^{-2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
Factor the expressions that are not already factored in \frac{x^{-6}-64}{4+2x^{-1}+x^{-2}}.
\frac{-x^{-6}\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)}{x^{-2}}\times \frac{x^{2}}{4-4x^{-1}+x^{-2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
Cancel out 4x^{2}+2x+1 in both numerator and denominator.
\frac{-\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)}{x^{4}}\times \frac{x^{2}}{4-4x^{-1}+x^{-2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{-\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)}{x^{4}}\times \frac{x^{2}}{x^{-2}\left(2x-1\right)^{2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
Factor the expressions that are not already factored in \frac{x^{2}}{4-4x^{-1}+x^{-2}}.
\frac{-\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)}{x^{4}}\times \frac{x^{4}}{\left(2x-1\right)^{2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{-\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)x^{4}}{x^{4}\left(2x-1\right)^{2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
Multiply \frac{-\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)}{x^{4}} times \frac{x^{4}}{\left(2x-1\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(2x+1\right)\left(4x^{2}-2x+1\right)}{2x-1}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
Cancel out \left(2x-1\right)x^{4} in both numerator and denominator.
\frac{-\left(2x+1\right)\left(4x^{2}-2x+1\right)}{2x-1}-\frac{8x^{3}+4x^{2}}{1-2x}
Use the distributive property to multiply 4x^{2} by 2x+1.
\frac{-\left(2x+1\right)\left(4x^{2}-2x+1\right)}{2x-1}-\frac{-\left(8x^{3}+4x^{2}\right)}{2x-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x-1 and 1-2x is 2x-1. Multiply \frac{8x^{3}+4x^{2}}{1-2x} times \frac{-1}{-1}.
\frac{-\left(2x+1\right)\left(4x^{2}-2x+1\right)-\left(-\left(8x^{3}+4x^{2}\right)\right)}{2x-1}
Since \frac{-\left(2x+1\right)\left(4x^{2}-2x+1\right)}{2x-1} and \frac{-\left(8x^{3}+4x^{2}\right)}{2x-1} have the same denominator, subtract them by subtracting their numerators.
\frac{-8x^{3}+4x^{2}-2x-4x^{2}+2x-1+8x^{3}+4x^{2}}{2x-1}
Do the multiplications in -\left(2x+1\right)\left(4x^{2}-2x+1\right)-\left(-\left(8x^{3}+4x^{2}\right)\right).
\frac{4x^{2}-1}{2x-1}
Combine like terms in -8x^{3}+4x^{2}-2x-4x^{2}+2x-1+8x^{3}+4x^{2}.
\frac{\left(2x-1\right)\left(2x+1\right)}{2x-1}
Factor the expressions that are not already factored in \frac{4x^{2}-1}{2x-1}.
2x+1
Cancel out 2x-1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}