Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-x^{-6}\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)\left(4x^{2}+2x+1\right)}{x^{-2}\left(4x^{2}+2x+1\right)}\times \frac{x^{2}}{4-4x^{-1}+x^{-2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
Factor the expressions that are not already factored in \frac{x^{-6}-64}{4+2x^{-1}+x^{-2}}.
\frac{-x^{-6}\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)}{x^{-2}}\times \frac{x^{2}}{4-4x^{-1}+x^{-2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
Cancel out 4x^{2}+2x+1 in both numerator and denominator.
\frac{-\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)}{x^{4}}\times \frac{x^{2}}{4-4x^{-1}+x^{-2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{-\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)}{x^{4}}\times \frac{x^{2}}{x^{-2}\left(2x-1\right)^{2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
Factor the expressions that are not already factored in \frac{x^{2}}{4-4x^{-1}+x^{-2}}.
\frac{-\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)}{x^{4}}\times \frac{x^{4}}{\left(2x-1\right)^{2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{-\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)x^{4}}{x^{4}\left(2x-1\right)^{2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
Multiply \frac{-\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)}{x^{4}} times \frac{x^{4}}{\left(2x-1\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(2x+1\right)\left(4x^{2}-2x+1\right)}{2x-1}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
Cancel out \left(2x-1\right)x^{4} in both numerator and denominator.
\frac{-\left(2x+1\right)\left(4x^{2}-2x+1\right)}{2x-1}-\frac{8x^{3}+4x^{2}}{1-2x}
Use the distributive property to multiply 4x^{2} by 2x+1.
\frac{-\left(2x+1\right)\left(4x^{2}-2x+1\right)}{2x-1}-\frac{-\left(8x^{3}+4x^{2}\right)}{2x-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x-1 and 1-2x is 2x-1. Multiply \frac{8x^{3}+4x^{2}}{1-2x} times \frac{-1}{-1}.
\frac{-\left(2x+1\right)\left(4x^{2}-2x+1\right)-\left(-\left(8x^{3}+4x^{2}\right)\right)}{2x-1}
Since \frac{-\left(2x+1\right)\left(4x^{2}-2x+1\right)}{2x-1} and \frac{-\left(8x^{3}+4x^{2}\right)}{2x-1} have the same denominator, subtract them by subtracting their numerators.
\frac{-8x^{3}+4x^{2}-2x-4x^{2}+2x-1+8x^{3}+4x^{2}}{2x-1}
Do the multiplications in -\left(2x+1\right)\left(4x^{2}-2x+1\right)-\left(-\left(8x^{3}+4x^{2}\right)\right).
\frac{4x^{2}-1}{2x-1}
Combine like terms in -8x^{3}+4x^{2}-2x-4x^{2}+2x-1+8x^{3}+4x^{2}.
\frac{\left(2x-1\right)\left(2x+1\right)}{2x-1}
Factor the expressions that are not already factored in \frac{4x^{2}-1}{2x-1}.
2x+1
Cancel out 2x-1 in both numerator and denominator.
\frac{-x^{-6}\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)\left(4x^{2}+2x+1\right)}{x^{-2}\left(4x^{2}+2x+1\right)}\times \frac{x^{2}}{4-4x^{-1}+x^{-2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
Factor the expressions that are not already factored in \frac{x^{-6}-64}{4+2x^{-1}+x^{-2}}.
\frac{-x^{-6}\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)}{x^{-2}}\times \frac{x^{2}}{4-4x^{-1}+x^{-2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
Cancel out 4x^{2}+2x+1 in both numerator and denominator.
\frac{-\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)}{x^{4}}\times \frac{x^{2}}{4-4x^{-1}+x^{-2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{-\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)}{x^{4}}\times \frac{x^{2}}{x^{-2}\left(2x-1\right)^{2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
Factor the expressions that are not already factored in \frac{x^{2}}{4-4x^{-1}+x^{-2}}.
\frac{-\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)}{x^{4}}\times \frac{x^{4}}{\left(2x-1\right)^{2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{-\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)x^{4}}{x^{4}\left(2x-1\right)^{2}}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
Multiply \frac{-\left(2x-1\right)\left(2x+1\right)\left(4x^{2}-2x+1\right)}{x^{4}} times \frac{x^{4}}{\left(2x-1\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(2x+1\right)\left(4x^{2}-2x+1\right)}{2x-1}-\frac{4x^{2}\left(2x+1\right)}{1-2x}
Cancel out \left(2x-1\right)x^{4} in both numerator and denominator.
\frac{-\left(2x+1\right)\left(4x^{2}-2x+1\right)}{2x-1}-\frac{8x^{3}+4x^{2}}{1-2x}
Use the distributive property to multiply 4x^{2} by 2x+1.
\frac{-\left(2x+1\right)\left(4x^{2}-2x+1\right)}{2x-1}-\frac{-\left(8x^{3}+4x^{2}\right)}{2x-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x-1 and 1-2x is 2x-1. Multiply \frac{8x^{3}+4x^{2}}{1-2x} times \frac{-1}{-1}.
\frac{-\left(2x+1\right)\left(4x^{2}-2x+1\right)-\left(-\left(8x^{3}+4x^{2}\right)\right)}{2x-1}
Since \frac{-\left(2x+1\right)\left(4x^{2}-2x+1\right)}{2x-1} and \frac{-\left(8x^{3}+4x^{2}\right)}{2x-1} have the same denominator, subtract them by subtracting their numerators.
\frac{-8x^{3}+4x^{2}-2x-4x^{2}+2x-1+8x^{3}+4x^{2}}{2x-1}
Do the multiplications in -\left(2x+1\right)\left(4x^{2}-2x+1\right)-\left(-\left(8x^{3}+4x^{2}\right)\right).
\frac{4x^{2}-1}{2x-1}
Combine like terms in -8x^{3}+4x^{2}-2x-4x^{2}+2x-1+8x^{3}+4x^{2}.
\frac{\left(2x-1\right)\left(2x+1\right)}{2x-1}
Factor the expressions that are not already factored in \frac{4x^{2}-1}{2x-1}.
2x+1
Cancel out 2x-1 in both numerator and denominator.