Solve for u
u = \frac{\sqrt{17}}{2} \approx 2.061552813
u = -\frac{\sqrt{17}}{2} \approx -2.061552813
Share
Copied to clipboard
10u^{2}=15\times \frac{3\times 6+4}{6}-6\times 3\times \left(\frac{5}{6}\right)^{2}
Multiply both sides of the equation by 30, the least common multiple of 3,2,5.
10u^{2}=15\times \frac{18+4}{6}-6\times 3\times \left(\frac{5}{6}\right)^{2}
Multiply 3 and 6 to get 18.
10u^{2}=15\times \frac{22}{6}-6\times 3\times \left(\frac{5}{6}\right)^{2}
Add 18 and 4 to get 22.
10u^{2}=15\times \frac{11}{3}-6\times 3\times \left(\frac{5}{6}\right)^{2}
Reduce the fraction \frac{22}{6} to lowest terms by extracting and canceling out 2.
10u^{2}=55-6\times 3\times \left(\frac{5}{6}\right)^{2}
Multiply 15 and \frac{11}{3} to get 55.
10u^{2}=55-18\times \left(\frac{5}{6}\right)^{2}
Multiply -6 and 3 to get -18.
10u^{2}=55-18\times \frac{25}{36}
Calculate \frac{5}{6} to the power of 2 and get \frac{25}{36}.
10u^{2}=55-\frac{25}{2}
Multiply -18 and \frac{25}{36} to get -\frac{25}{2}.
10u^{2}=\frac{85}{2}
Subtract \frac{25}{2} from 55 to get \frac{85}{2}.
u^{2}=\frac{\frac{85}{2}}{10}
Divide both sides by 10.
u^{2}=\frac{85}{2\times 10}
Express \frac{\frac{85}{2}}{10} as a single fraction.
u^{2}=\frac{85}{20}
Multiply 2 and 10 to get 20.
u^{2}=\frac{17}{4}
Reduce the fraction \frac{85}{20} to lowest terms by extracting and canceling out 5.
u=\frac{\sqrt{17}}{2} u=-\frac{\sqrt{17}}{2}
Take the square root of both sides of the equation.
10u^{2}=15\times \frac{3\times 6+4}{6}-6\times 3\times \left(\frac{5}{6}\right)^{2}
Multiply both sides of the equation by 30, the least common multiple of 3,2,5.
10u^{2}=15\times \frac{18+4}{6}-6\times 3\times \left(\frac{5}{6}\right)^{2}
Multiply 3 and 6 to get 18.
10u^{2}=15\times \frac{22}{6}-6\times 3\times \left(\frac{5}{6}\right)^{2}
Add 18 and 4 to get 22.
10u^{2}=15\times \frac{11}{3}-6\times 3\times \left(\frac{5}{6}\right)^{2}
Reduce the fraction \frac{22}{6} to lowest terms by extracting and canceling out 2.
10u^{2}=55-6\times 3\times \left(\frac{5}{6}\right)^{2}
Multiply 15 and \frac{11}{3} to get 55.
10u^{2}=55-18\times \left(\frac{5}{6}\right)^{2}
Multiply -6 and 3 to get -18.
10u^{2}=55-18\times \frac{25}{36}
Calculate \frac{5}{6} to the power of 2 and get \frac{25}{36}.
10u^{2}=55-\frac{25}{2}
Multiply -18 and \frac{25}{36} to get -\frac{25}{2}.
10u^{2}=\frac{85}{2}
Subtract \frac{25}{2} from 55 to get \frac{85}{2}.
10u^{2}-\frac{85}{2}=0
Subtract \frac{85}{2} from both sides.
u=\frac{0±\sqrt{0^{2}-4\times 10\left(-\frac{85}{2}\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 0 for b, and -\frac{85}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{0±\sqrt{-4\times 10\left(-\frac{85}{2}\right)}}{2\times 10}
Square 0.
u=\frac{0±\sqrt{-40\left(-\frac{85}{2}\right)}}{2\times 10}
Multiply -4 times 10.
u=\frac{0±\sqrt{1700}}{2\times 10}
Multiply -40 times -\frac{85}{2}.
u=\frac{0±10\sqrt{17}}{2\times 10}
Take the square root of 1700.
u=\frac{0±10\sqrt{17}}{20}
Multiply 2 times 10.
u=\frac{\sqrt{17}}{2}
Now solve the equation u=\frac{0±10\sqrt{17}}{20} when ± is plus.
u=-\frac{\sqrt{17}}{2}
Now solve the equation u=\frac{0±10\sqrt{17}}{20} when ± is minus.
u=\frac{\sqrt{17}}{2} u=-\frac{\sqrt{17}}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}