Skip to main content
Solve for j
Tick mark Image

Similar Problems from Web Search

Share

\left(t^{r}-1\right)i+\sqrt{rt^{r}-1}j\left(t-1\right)+rtkt\left(t-1\right)=t-1
Multiply both sides of the equation by t-1.
\left(t^{r}-1\right)i+\sqrt{rt^{r}-1}j\left(t-1\right)+rt^{2}k\left(t-1\right)=t-1
Multiply t and t to get t^{2}.
it^{r}-i+\sqrt{rt^{r}-1}j\left(t-1\right)+rt^{2}k\left(t-1\right)=t-1
Use the distributive property to multiply t^{r}-1 by i.
it^{r}-i+\sqrt{rt^{r}-1}jt-\sqrt{rt^{r}-1}j+rt^{2}k\left(t-1\right)=t-1
Use the distributive property to multiply \sqrt{rt^{r}-1}j by t-1.
it^{r}-i+\sqrt{rt^{r}-1}jt-\sqrt{rt^{r}-1}j+rkt^{3}-rt^{2}k=t-1
Use the distributive property to multiply rt^{2}k by t-1.
-i+\sqrt{rt^{r}-1}jt-\sqrt{rt^{r}-1}j+rkt^{3}-rt^{2}k=t-1-it^{r}
Subtract it^{r} from both sides.
\sqrt{rt^{r}-1}jt-\sqrt{rt^{r}-1}j+rkt^{3}-rt^{2}k=t-1-it^{r}+i
Add i to both sides.
\sqrt{rt^{r}-1}jt-\sqrt{rt^{r}-1}j-rt^{2}k=t-1-it^{r}+i-rkt^{3}
Subtract rkt^{3} from both sides.
\sqrt{rt^{r}-1}jt-\sqrt{rt^{r}-1}j=t-1-it^{r}+i-rkt^{3}+rt^{2}k
Add rt^{2}k to both sides.
jt\sqrt{rt^{r}-1}-j\sqrt{rt^{r}-1}=-krt^{3}+krt^{2}+t-it^{r}-1+i
Reorder the terms.
\left(t\sqrt{rt^{r}-1}-\sqrt{rt^{r}-1}\right)j=-krt^{3}+krt^{2}+t-it^{r}-1+i
Combine all terms containing j.
\left(t\sqrt{rt^{r}-1}-\sqrt{rt^{r}-1}\right)j=-1+i-it^{r}+t+krt^{2}-krt^{3}
The equation is in standard form.
\frac{\left(t\sqrt{rt^{r}-1}-\sqrt{rt^{r}-1}\right)j}{t\sqrt{rt^{r}-1}-\sqrt{rt^{r}-1}}=\frac{-1+i-it^{r}+t+krt^{2}-krt^{3}}{t\sqrt{rt^{r}-1}-\sqrt{rt^{r}-1}}
Divide both sides by t\sqrt{rt^{r}-1}-\sqrt{rt^{r}-1}.
j=\frac{-1+i-it^{r}+t+krt^{2}-krt^{3}}{t\sqrt{rt^{r}-1}-\sqrt{rt^{r}-1}}
Dividing by t\sqrt{rt^{r}-1}-\sqrt{rt^{r}-1} undoes the multiplication by t\sqrt{rt^{r}-1}-\sqrt{rt^{r}-1}.
j=\frac{\left(rt^{r}-1\right)^{-\frac{1}{2}}\left(-1+i-it^{r}+t+krt^{2}-krt^{3}\right)}{t-1}
Divide -it^{r}-krt^{3}+krt^{2}+t+\left(-1+i\right) by t\sqrt{rt^{r}-1}-\sqrt{rt^{r}-1}.