Solve for j
\left\{\begin{matrix}j=-\frac{\left(rt^{r}-1\right)^{-\frac{1}{2}}\left(krt^{3}-krt^{2}-t+it^{r}+\left(1-i\right)\right)}{t-1}\text{, }&t\neq 1\text{ and }\left(r=0\text{ or }\nexists n_{1}\in \mathrm{Z}\text{ : }t=e^{-\frac{2\pi n_{1}iRe(r)}{\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}}-\frac{2\pi n_{1}Im(r)}{\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}}+\frac{arg(\frac{1}{r})Im(r)+iarg(\frac{1}{r})Re(r)}{\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}}}\left(|r|\right)^{\frac{-Re(r)+iIm(r)}{\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}}}\right)\\j\in \mathrm{C}\text{, }&k=-\frac{1-i+it^{r}-t}{r\left(t-1\right)t^{2}}\text{ and }t\neq 0\text{ and }t\neq 1\text{ and }r\neq 0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }t=e^{-\frac{2iRe(r)\pi n_{1}}{\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}}-\frac{2\pi n_{1}Im(r)}{\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}}+\frac{arg(\frac{1}{r})Im(r)+iarg(\frac{1}{r})Re(r)}{\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}}}\left(|r|\right)^{\frac{-Re(r)+iIm(r)}{\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}}}\end{matrix}\right.
Share
Copied to clipboard
\left(t^{r}-1\right)i+\sqrt{rt^{r}-1}j\left(t-1\right)+rtkt\left(t-1\right)=t-1
Multiply both sides of the equation by t-1.
\left(t^{r}-1\right)i+\sqrt{rt^{r}-1}j\left(t-1\right)+rt^{2}k\left(t-1\right)=t-1
Multiply t and t to get t^{2}.
it^{r}-i+\sqrt{rt^{r}-1}j\left(t-1\right)+rt^{2}k\left(t-1\right)=t-1
Use the distributive property to multiply t^{r}-1 by i.
it^{r}-i+\sqrt{rt^{r}-1}jt-\sqrt{rt^{r}-1}j+rt^{2}k\left(t-1\right)=t-1
Use the distributive property to multiply \sqrt{rt^{r}-1}j by t-1.
it^{r}-i+\sqrt{rt^{r}-1}jt-\sqrt{rt^{r}-1}j+rkt^{3}-rt^{2}k=t-1
Use the distributive property to multiply rt^{2}k by t-1.
-i+\sqrt{rt^{r}-1}jt-\sqrt{rt^{r}-1}j+rkt^{3}-rt^{2}k=t-1-it^{r}
Subtract it^{r} from both sides.
\sqrt{rt^{r}-1}jt-\sqrt{rt^{r}-1}j+rkt^{3}-rt^{2}k=t-1-it^{r}+i
Add i to both sides.
\sqrt{rt^{r}-1}jt-\sqrt{rt^{r}-1}j-rt^{2}k=t-1-it^{r}+i-rkt^{3}
Subtract rkt^{3} from both sides.
\sqrt{rt^{r}-1}jt-\sqrt{rt^{r}-1}j=t-1-it^{r}+i-rkt^{3}+rt^{2}k
Add rt^{2}k to both sides.
jt\sqrt{rt^{r}-1}-j\sqrt{rt^{r}-1}=-krt^{3}+krt^{2}+t-it^{r}-1+i
Reorder the terms.
\left(t\sqrt{rt^{r}-1}-\sqrt{rt^{r}-1}\right)j=-krt^{3}+krt^{2}+t-it^{r}-1+i
Combine all terms containing j.
\left(t\sqrt{rt^{r}-1}-\sqrt{rt^{r}-1}\right)j=-1+i-it^{r}+t+krt^{2}-krt^{3}
The equation is in standard form.
\frac{\left(t\sqrt{rt^{r}-1}-\sqrt{rt^{r}-1}\right)j}{t\sqrt{rt^{r}-1}-\sqrt{rt^{r}-1}}=\frac{-1+i-it^{r}+t+krt^{2}-krt^{3}}{t\sqrt{rt^{r}-1}-\sqrt{rt^{r}-1}}
Divide both sides by t\sqrt{rt^{r}-1}-\sqrt{rt^{r}-1}.
j=\frac{-1+i-it^{r}+t+krt^{2}-krt^{3}}{t\sqrt{rt^{r}-1}-\sqrt{rt^{r}-1}}
Dividing by t\sqrt{rt^{r}-1}-\sqrt{rt^{r}-1} undoes the multiplication by t\sqrt{rt^{r}-1}-\sqrt{rt^{r}-1}.
j=\frac{\left(rt^{r}-1\right)^{-\frac{1}{2}}\left(-1+i-it^{r}+t+krt^{2}-krt^{3}\right)}{t-1}
Divide -it^{r}-krt^{3}+krt^{2}+t+\left(-1+i\right) by t\sqrt{rt^{r}-1}-\sqrt{rt^{r}-1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}