Solve for k
k=2
k=-2
Share
Copied to clipboard
k^{2}=4
Multiply both sides by 4.
k^{2}-4=0
Subtract 4 from both sides.
\left(k-2\right)\left(k+2\right)=0
Consider k^{2}-4. Rewrite k^{2}-4 as k^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
k=2 k=-2
To find equation solutions, solve k-2=0 and k+2=0.
k^{2}=4
Multiply both sides by 4.
k=2 k=-2
Take the square root of both sides of the equation.
k^{2}=4
Multiply both sides by 4.
k^{2}-4=0
Subtract 4 from both sides.
k=\frac{0±\sqrt{0^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\left(-4\right)}}{2}
Square 0.
k=\frac{0±\sqrt{16}}{2}
Multiply -4 times -4.
k=\frac{0±4}{2}
Take the square root of 16.
k=2
Now solve the equation k=\frac{0±4}{2} when ± is plus. Divide 4 by 2.
k=-2
Now solve the equation k=\frac{0±4}{2} when ± is minus. Divide -4 by 2.
k=2 k=-2
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}