Evaluate
\frac{2e^{5}}{k}
Differentiate w.r.t. k
-\frac{2e^{5}}{k^{2}}
Share
Copied to clipboard
\frac{e^{6}\times 8^{\frac{1}{3}}\left(k^{3}\right)^{\frac{1}{3}}}{\left(e^{2}k^{4}\right)^{\frac{1}{2}}}
Expand \left(8k^{3}\right)^{\frac{1}{3}}.
\frac{e^{6}\times 8^{\frac{1}{3}}k^{1}}{\left(e^{2}k^{4}\right)^{\frac{1}{2}}}
To raise a power to another power, multiply the exponents. Multiply 3 and \frac{1}{3} to get 1.
\frac{e^{6}\times 2k^{1}}{\left(e^{2}k^{4}\right)^{\frac{1}{2}}}
Calculate 8 to the power of \frac{1}{3} and get 2.
\frac{e^{6}\times 2k}{\left(e^{2}k^{4}\right)^{\frac{1}{2}}}
Calculate k to the power of 1 and get k.
\frac{e^{6}\times 2k}{\left(e^{2}\right)^{\frac{1}{2}}\left(k^{4}\right)^{\frac{1}{2}}}
Expand \left(e^{2}k^{4}\right)^{\frac{1}{2}}.
\frac{e^{6}\times 2k}{e^{1}\left(k^{4}\right)^{\frac{1}{2}}}
To raise a power to another power, multiply the exponents. Multiply 2 and \frac{1}{2} to get 1.
\frac{e^{6}\times 2k}{e^{1}k^{2}}
To raise a power to another power, multiply the exponents. Multiply 4 and \frac{1}{2} to get 2.
\frac{e^{6}\times 2k}{ek^{2}}
Calculate e to the power of 1 and get e.
\frac{2e^{5}}{k}
Cancel out ek in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}