\frac{ { c }_{ 2 } r \left( k-r \right) }{ k } T- \frac{ { c }_{ 1 } }{ { T }^{ 2 } } =0
Solve for c_1
c_{1}=\frac{c_{2}r\left(k-r\right)T^{3}}{k}
k\neq 0\text{ and }T\neq 0
Solve for T
\left\{\begin{matrix}T=\sqrt[3]{\frac{c_{1}k}{c_{2}r\left(k-r\right)}}\text{, }&k\neq 0\text{ and }c_{1}\neq 0\text{ and }r\neq k\text{ and }r\neq 0\text{ and }c_{2}\neq 0\\T\neq 0\text{, }&\left(r=k\text{ or }r=0\text{ or }c_{2}=0\right)\text{ and }c_{1}=0\text{ and }k\neq 0\end{matrix}\right.
Share
Copied to clipboard
T^{2}c_{2}r\left(k-r\right)T-kc_{1}=0
Multiply both sides of the equation by kT^{2}, the least common multiple of k,T^{2}.
T^{3}c_{2}r\left(k-r\right)-kc_{1}=0
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
T^{3}c_{2}rk-T^{3}c_{2}r^{2}-kc_{1}=0
Use the distributive property to multiply T^{3}c_{2}r by k-r.
-T^{3}c_{2}r^{2}-kc_{1}=-T^{3}c_{2}rk
Subtract T^{3}c_{2}rk from both sides. Anything subtracted from zero gives its negation.
-kc_{1}=-T^{3}c_{2}rk+T^{3}c_{2}r^{2}
Add T^{3}c_{2}r^{2} to both sides.
-c_{1}k=c_{2}r^{2}T^{3}-c_{2}krT^{3}
Reorder the terms.
\left(-k\right)c_{1}=c_{2}r^{2}T^{3}-c_{2}krT^{3}
The equation is in standard form.
\frac{\left(-k\right)c_{1}}{-k}=\frac{c_{2}r\left(r-k\right)T^{3}}{-k}
Divide both sides by -k.
c_{1}=\frac{c_{2}r\left(r-k\right)T^{3}}{-k}
Dividing by -k undoes the multiplication by -k.
c_{1}=-\frac{c_{2}r\left(r-k\right)T^{3}}{k}
Divide c_{2}r\left(r-k\right)T^{3} by -k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}