Evaluate
-5400000a^{2}
Differentiate w.r.t. a
-10800000a
Share
Copied to clipboard
\frac{a^{2}\left(-324\right)\times 45^{-6}}{15^{-3}\times 30^{-8}\times \left(\frac{-2}{8}\right)^{-2}}
Multiply -12 and 27 to get -324.
\frac{a^{2}\left(-324\right)\times \frac{1}{8303765625}}{15^{-3}\times 30^{-8}\times \left(\frac{-2}{8}\right)^{-2}}
Calculate 45 to the power of -6 and get \frac{1}{8303765625}.
\frac{a^{2}\left(-\frac{4}{102515625}\right)}{15^{-3}\times 30^{-8}\times \left(\frac{-2}{8}\right)^{-2}}
Multiply -324 and \frac{1}{8303765625} to get -\frac{4}{102515625}.
\frac{a^{2}\left(-\frac{4}{102515625}\right)}{\frac{1}{3375}\times 30^{-8}\times \left(\frac{-2}{8}\right)^{-2}}
Calculate 15 to the power of -3 and get \frac{1}{3375}.
\frac{a^{2}\left(-\frac{4}{102515625}\right)}{\frac{1}{3375}\times \frac{1}{656100000000}\times \left(\frac{-2}{8}\right)^{-2}}
Calculate 30 to the power of -8 and get \frac{1}{656100000000}.
\frac{a^{2}\left(-\frac{4}{102515625}\right)}{\frac{1}{2214337500000000}\times \left(\frac{-2}{8}\right)^{-2}}
Multiply \frac{1}{3375} and \frac{1}{656100000000} to get \frac{1}{2214337500000000}.
\frac{a^{2}\left(-\frac{4}{102515625}\right)}{\frac{1}{2214337500000000}\left(-\frac{1}{4}\right)^{-2}}
Reduce the fraction \frac{-2}{8} to lowest terms by extracting and canceling out 2.
\frac{a^{2}\left(-\frac{4}{102515625}\right)}{\frac{1}{2214337500000000}\times 16}
Calculate -\frac{1}{4} to the power of -2 and get 16.
\frac{a^{2}\left(-\frac{4}{102515625}\right)}{\frac{1}{138396093750000}}
Multiply \frac{1}{2214337500000000} and 16 to get \frac{1}{138396093750000}.
a^{2}\left(-\frac{4}{102515625}\right)\times 138396093750000
Divide a^{2}\left(-\frac{4}{102515625}\right) by \frac{1}{138396093750000} by multiplying a^{2}\left(-\frac{4}{102515625}\right) by the reciprocal of \frac{1}{138396093750000}.
a^{2}\left(-5400000\right)
Multiply -\frac{4}{102515625} and 138396093750000 to get -5400000.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}\left(-324\right)\times 45^{-6}}{15^{-3}\times 30^{-8}\times \left(\frac{-2}{8}\right)^{-2}})
Multiply -12 and 27 to get -324.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}\left(-324\right)\times \frac{1}{8303765625}}{15^{-3}\times 30^{-8}\times \left(\frac{-2}{8}\right)^{-2}})
Calculate 45 to the power of -6 and get \frac{1}{8303765625}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}\left(-\frac{4}{102515625}\right)}{15^{-3}\times 30^{-8}\times \left(\frac{-2}{8}\right)^{-2}})
Multiply -324 and \frac{1}{8303765625} to get -\frac{4}{102515625}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}\left(-\frac{4}{102515625}\right)}{\frac{1}{3375}\times 30^{-8}\times \left(\frac{-2}{8}\right)^{-2}})
Calculate 15 to the power of -3 and get \frac{1}{3375}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}\left(-\frac{4}{102515625}\right)}{\frac{1}{3375}\times \frac{1}{656100000000}\times \left(\frac{-2}{8}\right)^{-2}})
Calculate 30 to the power of -8 and get \frac{1}{656100000000}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}\left(-\frac{4}{102515625}\right)}{\frac{1}{2214337500000000}\times \left(\frac{-2}{8}\right)^{-2}})
Multiply \frac{1}{3375} and \frac{1}{656100000000} to get \frac{1}{2214337500000000}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}\left(-\frac{4}{102515625}\right)}{\frac{1}{2214337500000000}\left(-\frac{1}{4}\right)^{-2}})
Reduce the fraction \frac{-2}{8} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}\left(-\frac{4}{102515625}\right)}{\frac{1}{2214337500000000}\times 16})
Calculate -\frac{1}{4} to the power of -2 and get 16.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}\left(-\frac{4}{102515625}\right)}{\frac{1}{138396093750000}})
Multiply \frac{1}{2214337500000000} and 16 to get \frac{1}{138396093750000}.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{2}\left(-\frac{4}{102515625}\right)\times 138396093750000)
Divide a^{2}\left(-\frac{4}{102515625}\right) by \frac{1}{138396093750000} by multiplying a^{2}\left(-\frac{4}{102515625}\right) by the reciprocal of \frac{1}{138396093750000}.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{2}\left(-5400000\right))
Multiply -\frac{4}{102515625} and 138396093750000 to get -5400000.
2\left(-5400000\right)a^{2-1}
The derivative of ax^{n} is nax^{n-1}.
-10800000a^{2-1}
Multiply 2 times -5400000.
-10800000a^{1}
Subtract 1 from 2.
-10800000a
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}