Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a\left(a+b\right)}{b\left(a+b\right)}+\frac{2ab}{ab-b^{2}}
Factor the expressions that are not already factored in \frac{a^{2}+ab}{ab+b^{2}}.
\frac{a}{b}+\frac{2ab}{ab-b^{2}}
Cancel out a+b in both numerator and denominator.
\frac{a}{b}+\frac{2ab}{b\left(a-b\right)}
Factor the expressions that are not already factored in \frac{2ab}{ab-b^{2}}.
\frac{a}{b}+\frac{2a}{a-b}
Cancel out b in both numerator and denominator.
\frac{a\left(a-b\right)}{b\left(a-b\right)}+\frac{2ab}{b\left(a-b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b and a-b is b\left(a-b\right). Multiply \frac{a}{b} times \frac{a-b}{a-b}. Multiply \frac{2a}{a-b} times \frac{b}{b}.
\frac{a\left(a-b\right)+2ab}{b\left(a-b\right)}
Since \frac{a\left(a-b\right)}{b\left(a-b\right)} and \frac{2ab}{b\left(a-b\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}-ab+2ab}{b\left(a-b\right)}
Do the multiplications in a\left(a-b\right)+2ab.
\frac{a^{2}+ab}{b\left(a-b\right)}
Combine like terms in a^{2}-ab+2ab.
\frac{a^{2}+ab}{ab-b^{2}}
Expand b\left(a-b\right).
\frac{a\left(a+b\right)}{b\left(a+b\right)}+\frac{2ab}{ab-b^{2}}
Factor the expressions that are not already factored in \frac{a^{2}+ab}{ab+b^{2}}.
\frac{a}{b}+\frac{2ab}{ab-b^{2}}
Cancel out a+b in both numerator and denominator.
\frac{a}{b}+\frac{2ab}{b\left(a-b\right)}
Factor the expressions that are not already factored in \frac{2ab}{ab-b^{2}}.
\frac{a}{b}+\frac{2a}{a-b}
Cancel out b in both numerator and denominator.
\frac{a\left(a-b\right)}{b\left(a-b\right)}+\frac{2ab}{b\left(a-b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b and a-b is b\left(a-b\right). Multiply \frac{a}{b} times \frac{a-b}{a-b}. Multiply \frac{2a}{a-b} times \frac{b}{b}.
\frac{a\left(a-b\right)+2ab}{b\left(a-b\right)}
Since \frac{a\left(a-b\right)}{b\left(a-b\right)} and \frac{2ab}{b\left(a-b\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}-ab+2ab}{b\left(a-b\right)}
Do the multiplications in a\left(a-b\right)+2ab.
\frac{a^{2}+ab}{b\left(a-b\right)}
Combine like terms in a^{2}-ab+2ab.
\frac{a^{2}+ab}{ab-b^{2}}
Expand b\left(a-b\right).