Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}+4\left(\sqrt{155+3}\right)^{2}=36
Multiply both sides of the equation by 36, the least common multiple of 36,9.
a^{2}+4\left(\sqrt{158}\right)^{2}=36
Add 155 and 3 to get 158.
a^{2}+4\times 158=36
The square of \sqrt{158} is 158.
a^{2}+632=36
Multiply 4 and 158 to get 632.
a^{2}=36-632
Subtract 632 from both sides.
a^{2}=-596
Subtract 632 from 36 to get -596.
a=2\sqrt{149}i a=-2\sqrt{149}i
The equation is now solved.
a^{2}+4\left(\sqrt{155+3}\right)^{2}=36
Multiply both sides of the equation by 36, the least common multiple of 36,9.
a^{2}+4\left(\sqrt{158}\right)^{2}=36
Add 155 and 3 to get 158.
a^{2}+4\times 158=36
The square of \sqrt{158} is 158.
a^{2}+632=36
Multiply 4 and 158 to get 632.
a^{2}+632-36=0
Subtract 36 from both sides.
a^{2}+596=0
Subtract 36 from 632 to get 596.
a=\frac{0±\sqrt{0^{2}-4\times 596}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and 596 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\times 596}}{2}
Square 0.
a=\frac{0±\sqrt{-2384}}{2}
Multiply -4 times 596.
a=\frac{0±4\sqrt{149}i}{2}
Take the square root of -2384.
a=2\sqrt{149}i
Now solve the equation a=\frac{0±4\sqrt{149}i}{2} when ± is plus.
a=-2\sqrt{149}i
Now solve the equation a=\frac{0±4\sqrt{149}i}{2} when ± is minus.
a=2\sqrt{149}i a=-2\sqrt{149}i
The equation is now solved.