Evaluate
a^{3}
Differentiate w.r.t. a
3a^{2}
Share
Copied to clipboard
\frac{a^{\frac{3}{4}}a^{-\frac{1}{4}}}{a^{-\frac{10}{4}}}
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
\frac{a^{\frac{1}{2}}}{a^{-\frac{10}{4}}}
To multiply powers of the same base, add their exponents. Add \frac{3}{4} and -\frac{1}{4} to get \frac{1}{2}.
\frac{a^{\frac{1}{2}}}{a^{-\frac{5}{2}}}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
a^{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{\frac{3}{4}}a^{-\frac{1}{4}}}{a^{-\frac{10}{4}}})
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{\frac{1}{2}}}{a^{-\frac{10}{4}}})
To multiply powers of the same base, add their exponents. Add \frac{3}{4} and -\frac{1}{4} to get \frac{1}{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{\frac{1}{2}}}{a^{-\frac{5}{2}}})
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{3})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
3a^{3-1}
The derivative of ax^{n} is nax^{n-1}.
3a^{2}
Subtract 1 from 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}