Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{81}{20^{2}}+\frac{y^{2}}{16^{2}}=1
Calculate 9 to the power of 2 and get 81.
\frac{81}{400}+\frac{y^{2}}{16^{2}}=1
Calculate 20 to the power of 2 and get 400.
\frac{81}{400}+\frac{y^{2}}{256}=1
Calculate 16 to the power of 2 and get 256.
\frac{81\times 16}{6400}+\frac{25y^{2}}{6400}=1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 400 and 256 is 6400. Multiply \frac{81}{400} times \frac{16}{16}. Multiply \frac{y^{2}}{256} times \frac{25}{25}.
\frac{81\times 16+25y^{2}}{6400}=1
Since \frac{81\times 16}{6400} and \frac{25y^{2}}{6400} have the same denominator, add them by adding their numerators.
\frac{1296+25y^{2}}{6400}=1
Do the multiplications in 81\times 16+25y^{2}.
\frac{81}{400}+\frac{1}{256}y^{2}=1
Divide each term of 1296+25y^{2} by 6400 to get \frac{81}{400}+\frac{1}{256}y^{2}.
\frac{1}{256}y^{2}=1-\frac{81}{400}
Subtract \frac{81}{400} from both sides.
\frac{1}{256}y^{2}=\frac{319}{400}
Subtract \frac{81}{400} from 1 to get \frac{319}{400}.
y^{2}=\frac{319}{400}\times 256
Multiply both sides by 256, the reciprocal of \frac{1}{256}.
y^{2}=\frac{5104}{25}
Multiply \frac{319}{400} and 256 to get \frac{5104}{25}.
y=\frac{4\sqrt{319}}{5} y=-\frac{4\sqrt{319}}{5}
Take the square root of both sides of the equation.
\frac{81}{20^{2}}+\frac{y^{2}}{16^{2}}=1
Calculate 9 to the power of 2 and get 81.
\frac{81}{400}+\frac{y^{2}}{16^{2}}=1
Calculate 20 to the power of 2 and get 400.
\frac{81}{400}+\frac{y^{2}}{256}=1
Calculate 16 to the power of 2 and get 256.
\frac{81\times 16}{6400}+\frac{25y^{2}}{6400}=1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 400 and 256 is 6400. Multiply \frac{81}{400} times \frac{16}{16}. Multiply \frac{y^{2}}{256} times \frac{25}{25}.
\frac{81\times 16+25y^{2}}{6400}=1
Since \frac{81\times 16}{6400} and \frac{25y^{2}}{6400} have the same denominator, add them by adding their numerators.
\frac{1296+25y^{2}}{6400}=1
Do the multiplications in 81\times 16+25y^{2}.
\frac{81}{400}+\frac{1}{256}y^{2}=1
Divide each term of 1296+25y^{2} by 6400 to get \frac{81}{400}+\frac{1}{256}y^{2}.
\frac{81}{400}+\frac{1}{256}y^{2}-1=0
Subtract 1 from both sides.
-\frac{319}{400}+\frac{1}{256}y^{2}=0
Subtract 1 from \frac{81}{400} to get -\frac{319}{400}.
\frac{1}{256}y^{2}-\frac{319}{400}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
y=\frac{0±\sqrt{0^{2}-4\times \frac{1}{256}\left(-\frac{319}{400}\right)}}{2\times \frac{1}{256}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{256} for a, 0 for b, and -\frac{319}{400} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times \frac{1}{256}\left(-\frac{319}{400}\right)}}{2\times \frac{1}{256}}
Square 0.
y=\frac{0±\sqrt{-\frac{1}{64}\left(-\frac{319}{400}\right)}}{2\times \frac{1}{256}}
Multiply -4 times \frac{1}{256}.
y=\frac{0±\sqrt{\frac{319}{25600}}}{2\times \frac{1}{256}}
Multiply -\frac{1}{64} times -\frac{319}{400} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{0±\frac{\sqrt{319}}{160}}{2\times \frac{1}{256}}
Take the square root of \frac{319}{25600}.
y=\frac{0±\frac{\sqrt{319}}{160}}{\frac{1}{128}}
Multiply 2 times \frac{1}{256}.
y=\frac{4\sqrt{319}}{5}
Now solve the equation y=\frac{0±\frac{\sqrt{319}}{160}}{\frac{1}{128}} when ± is plus.
y=-\frac{4\sqrt{319}}{5}
Now solve the equation y=\frac{0±\frac{\sqrt{319}}{160}}{\frac{1}{128}} when ± is minus.
y=\frac{4\sqrt{319}}{5} y=-\frac{4\sqrt{319}}{5}
The equation is now solved.