Solve for a
a=\frac{1}{2^{x}}+2^{x}
Solve for x
x=\log_{2}\left(\frac{\sqrt{a^{2}-4}+a}{2}\right)
x=\log_{2}\left(\frac{-\sqrt{a^{2}-4}+a}{2}\right)\text{, }a\geq 2
Graph
Share
Copied to clipboard
2^{x+1}-a=\frac{4^{x}-1}{2^{x}}
Swap sides so that all variable terms are on the left hand side.
-a=\frac{4^{x}-1}{2^{x}}-2^{x+1}
Subtract 2^{x+1} from both sides.
\frac{-a}{-1}=\frac{-\frac{1}{2^{x}}-2^{x}}{-1}
Divide both sides by -1.
a=\frac{-\frac{1}{2^{x}}-2^{x}}{-1}
Dividing by -1 undoes the multiplication by -1.
a=\frac{1}{2^{x}}+2^{x}
Divide -2^{x}-\frac{1}{2^{x}} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}