Solve for x
x=3
Solve for x (complex solution)
x=\frac{i\times 2\pi n_{1}}{\ln(2)}+3
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
\frac{16384\times 16\times 8^{-4}}{32^{-2}}=2^{x+13}
Calculate 4 to the power of 7 and get 16384.
\frac{262144\times 8^{-4}}{32^{-2}}=2^{x+13}
Multiply 16384 and 16 to get 262144.
\frac{262144\times \frac{1}{4096}}{32^{-2}}=2^{x+13}
Calculate 8 to the power of -4 and get \frac{1}{4096}.
\frac{64}{32^{-2}}=2^{x+13}
Multiply 262144 and \frac{1}{4096} to get 64.
\frac{64}{\frac{1}{1024}}=2^{x+13}
Calculate 32 to the power of -2 and get \frac{1}{1024}.
64\times 1024=2^{x+13}
Divide 64 by \frac{1}{1024} by multiplying 64 by the reciprocal of \frac{1}{1024}.
65536=2^{x+13}
Multiply 64 and 1024 to get 65536.
2^{x+13}=65536
Swap sides so that all variable terms are on the left hand side.
\log(2^{x+13})=\log(65536)
Take the logarithm of both sides of the equation.
\left(x+13\right)\log(2)=\log(65536)
The logarithm of a number raised to a power is the power times the logarithm of the number.
x+13=\frac{\log(65536)}{\log(2)}
Divide both sides by \log(2).
x+13=\log_{2}\left(65536\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=16-13
Subtract 13 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}