Evaluate
\frac{1520}{17}\approx 89.411764706
Factor
\frac{2 ^ {4} \cdot 5 \cdot 19}{17} = 89\frac{7}{17} = 89.41176470588235
Share
Copied to clipboard
\frac{9\left(5+12\right)-58}{\frac{\frac{1}{2}+5^{2}}{3+21}}
Calculate 3 to the power of 2 and get 9.
\frac{9\times 17-58}{\frac{\frac{1}{2}+5^{2}}{3+21}}
Add 5 and 12 to get 17.
\frac{153-58}{\frac{\frac{1}{2}+5^{2}}{3+21}}
Multiply 9 and 17 to get 153.
\frac{95}{\frac{\frac{1}{2}+5^{2}}{3+21}}
Subtract 58 from 153 to get 95.
\frac{95}{\frac{\frac{1}{2}+25}{3+21}}
Calculate 5 to the power of 2 and get 25.
\frac{95}{\frac{\frac{1}{2}+\frac{50}{2}}{3+21}}
Convert 25 to fraction \frac{50}{2}.
\frac{95}{\frac{\frac{1+50}{2}}{3+21}}
Since \frac{1}{2} and \frac{50}{2} have the same denominator, add them by adding their numerators.
\frac{95}{\frac{\frac{51}{2}}{3+21}}
Add 1 and 50 to get 51.
\frac{95}{\frac{\frac{51}{2}}{24}}
Add 3 and 21 to get 24.
\frac{95}{\frac{51}{2\times 24}}
Express \frac{\frac{51}{2}}{24} as a single fraction.
\frac{95}{\frac{51}{48}}
Multiply 2 and 24 to get 48.
\frac{95}{\frac{17}{16}}
Reduce the fraction \frac{51}{48} to lowest terms by extracting and canceling out 3.
95\times \frac{16}{17}
Divide 95 by \frac{17}{16} by multiplying 95 by the reciprocal of \frac{17}{16}.
\frac{95\times 16}{17}
Express 95\times \frac{16}{17} as a single fraction.
\frac{1520}{17}
Multiply 95 and 16 to get 1520.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}