Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2^{3}}+\frac{2^{3}}{\left(\frac{5}{13}\right)^{-1}}\times \frac{5^{-3}}{2^{-4}}
Rewrite 2^{13} as 2^{10}\times 2^{3}. Cancel out 2^{10} in both numerator and denominator.
\frac{1}{8}+\frac{2^{3}}{\left(\frac{5}{13}\right)^{-1}}\times \frac{5^{-3}}{2^{-4}}
Calculate 2 to the power of 3 and get 8.
\frac{1}{8}+\frac{8}{\left(\frac{5}{13}\right)^{-1}}\times \frac{5^{-3}}{2^{-4}}
Calculate 2 to the power of 3 and get 8.
\frac{1}{8}+\frac{8}{\frac{13}{5}}\times \frac{5^{-3}}{2^{-4}}
Calculate \frac{5}{13} to the power of -1 and get \frac{13}{5}.
\frac{1}{8}+8\times \frac{5}{13}\times \frac{5^{-3}}{2^{-4}}
Divide 8 by \frac{13}{5} by multiplying 8 by the reciprocal of \frac{13}{5}.
\frac{1}{8}+\frac{40}{13}\times \frac{5^{-3}}{2^{-4}}
Multiply 8 and \frac{5}{13} to get \frac{40}{13}.
\frac{1}{8}+\frac{40}{13}\times \frac{\frac{1}{125}}{2^{-4}}
Calculate 5 to the power of -3 and get \frac{1}{125}.
\frac{1}{8}+\frac{40}{13}\times \frac{\frac{1}{125}}{\frac{1}{16}}
Calculate 2 to the power of -4 and get \frac{1}{16}.
\frac{1}{8}+\frac{40}{13}\times \frac{1}{125}\times 16
Divide \frac{1}{125} by \frac{1}{16} by multiplying \frac{1}{125} by the reciprocal of \frac{1}{16}.
\frac{1}{8}+\frac{40}{13}\times \frac{16}{125}
Multiply \frac{1}{125} and 16 to get \frac{16}{125}.
\frac{1}{8}+\frac{128}{325}
Multiply \frac{40}{13} and \frac{16}{125} to get \frac{128}{325}.
\frac{1349}{2600}
Add \frac{1}{8} and \frac{128}{325} to get \frac{1349}{2600}.