Evaluate
\frac{100000}{x^{2}+200000x+10000000}
Differentiate w.r.t. x
-\frac{200000\left(x+100000\right)}{\left(x^{2}+200000x+10000000\right)^{2}}
Graph
Share
Copied to clipboard
\frac{\frac{1}{100}}{2\times 10^{-2}x+1+x^{2}\times 10^{-7}}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{\frac{1}{100}}{2\times \frac{1}{100}x+1+x^{2}\times 10^{-7}}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{\frac{1}{100}}{\frac{1}{50}x+1+x^{2}\times 10^{-7}}
Multiply 2 and \frac{1}{100} to get \frac{1}{50}.
\frac{\frac{1}{100}}{\frac{1}{50}x+1+x^{2}\times \frac{1}{10000000}}
Calculate 10 to the power of -7 and get \frac{1}{10000000}.
\frac{1}{100\left(\frac{1}{50}x+1+x^{2}\times \frac{1}{10000000}\right)}
Express \frac{\frac{1}{100}}{\frac{1}{50}x+1+x^{2}\times \frac{1}{10000000}} as a single fraction.
\frac{1}{2x+100+100x^{2}\times \frac{1}{10000000}}
Use the distributive property to multiply 100 by \frac{1}{50}x+1+x^{2}\times \frac{1}{10000000}.
\frac{1}{2x+100+\frac{1}{100000}x^{2}}
Multiply 100 and \frac{1}{10000000} to get \frac{1}{100000}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{100}}{2\times 10^{-2}x+1+x^{2}\times 10^{-7}})
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{100}}{2\times \frac{1}{100}x+1+x^{2}\times 10^{-7}})
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{100}}{\frac{1}{50}x+1+x^{2}\times 10^{-7}})
Multiply 2 and \frac{1}{100} to get \frac{1}{50}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{100}}{\frac{1}{50}x+1+x^{2}\times \frac{1}{10000000}})
Calculate 10 to the power of -7 and get \frac{1}{10000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{100\left(\frac{1}{50}x+1+x^{2}\times \frac{1}{10000000}\right)})
Express \frac{\frac{1}{100}}{\frac{1}{50}x+1+x^{2}\times \frac{1}{10000000}} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2x+100+100x^{2}\times \frac{1}{10000000}})
Use the distributive property to multiply 100 by \frac{1}{50}x+1+x^{2}\times \frac{1}{10000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2x+100+\frac{1}{100000}x^{2}})
Multiply 100 and \frac{1}{10000000} to get \frac{1}{100000}.
-\left(2x^{1}+\frac{1}{100000}x^{2}+100\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+\frac{1}{100000}x^{2}+100)
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(2x^{1}+\frac{1}{100000}x^{2}+100\right)^{-2}\left(2x^{1-1}+2\times \frac{1}{100000}x^{2-1}\right)
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(2x^{1}+\frac{1}{100000}x^{2}+100\right)^{-2}\left(-2x^{0}-\frac{1}{50000}x^{1}\right)
Simplify.
\left(2x+\frac{1}{100000}x^{2}+100\right)^{-2}\left(-2x^{0}-\frac{1}{50000}x\right)
For any term t, t^{1}=t.
\left(2x+\frac{1}{100000}x^{2}+100\right)^{-2}\left(-2-\frac{1}{50000}x\right)
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}