Evaluate
-\frac{150}{3047}\approx -0.04922875
Factor
-\frac{150}{3047} = -0.04922874958976042
Share
Copied to clipboard
\frac{1+12\times 1^{4}+41\times 1^{3}-2\times 1^{2}-192-160}{1^{6}+6\times 4^{5}-3\times 1^{4}-52\times 1^{3}-12\times 1^{2}+96-80}
Calculate 1 to the power of 5 and get 1.
\frac{1+12\times 1+41\times 1^{3}-2\times 1^{2}-192-160}{1^{6}+6\times 4^{5}-3\times 1^{4}-52\times 1^{3}-12\times 1^{2}+96-80}
Calculate 1 to the power of 4 and get 1.
\frac{1+12+41\times 1^{3}-2\times 1^{2}-192-160}{1^{6}+6\times 4^{5}-3\times 1^{4}-52\times 1^{3}-12\times 1^{2}+96-80}
Multiply 12 and 1 to get 12.
\frac{13+41\times 1^{3}-2\times 1^{2}-192-160}{1^{6}+6\times 4^{5}-3\times 1^{4}-52\times 1^{3}-12\times 1^{2}+96-80}
Add 1 and 12 to get 13.
\frac{13+41\times 1-2\times 1^{2}-192-160}{1^{6}+6\times 4^{5}-3\times 1^{4}-52\times 1^{3}-12\times 1^{2}+96-80}
Calculate 1 to the power of 3 and get 1.
\frac{13+41-2\times 1^{2}-192-160}{1^{6}+6\times 4^{5}-3\times 1^{4}-52\times 1^{3}-12\times 1^{2}+96-80}
Multiply 41 and 1 to get 41.
\frac{54-2\times 1^{2}-192-160}{1^{6}+6\times 4^{5}-3\times 1^{4}-52\times 1^{3}-12\times 1^{2}+96-80}
Add 13 and 41 to get 54.
\frac{54-2\times 1-192-160}{1^{6}+6\times 4^{5}-3\times 1^{4}-52\times 1^{3}-12\times 1^{2}+96-80}
Calculate 1 to the power of 2 and get 1.
\frac{54-2-192-160}{1^{6}+6\times 4^{5}-3\times 1^{4}-52\times 1^{3}-12\times 1^{2}+96-80}
Multiply 2 and 1 to get 2.
\frac{52-192-160}{1^{6}+6\times 4^{5}-3\times 1^{4}-52\times 1^{3}-12\times 1^{2}+96-80}
Subtract 2 from 54 to get 52.
\frac{-140-160}{1^{6}+6\times 4^{5}-3\times 1^{4}-52\times 1^{3}-12\times 1^{2}+96-80}
Subtract 192 from 52 to get -140.
\frac{-300}{1^{6}+6\times 4^{5}-3\times 1^{4}-52\times 1^{3}-12\times 1^{2}+96-80}
Subtract 160 from -140 to get -300.
\frac{-300}{1+6\times 4^{5}-3\times 1^{4}-52\times 1^{3}-12\times 1^{2}+96-80}
Calculate 1 to the power of 6 and get 1.
\frac{-300}{1+6\times 1024-3\times 1^{4}-52\times 1^{3}-12\times 1^{2}+96-80}
Calculate 4 to the power of 5 and get 1024.
\frac{-300}{1+6144-3\times 1^{4}-52\times 1^{3}-12\times 1^{2}+96-80}
Multiply 6 and 1024 to get 6144.
\frac{-300}{6145-3\times 1^{4}-52\times 1^{3}-12\times 1^{2}+96-80}
Add 1 and 6144 to get 6145.
\frac{-300}{6145-3\times 1-52\times 1^{3}-12\times 1^{2}+96-80}
Calculate 1 to the power of 4 and get 1.
\frac{-300}{6145-3-52\times 1^{3}-12\times 1^{2}+96-80}
Multiply 3 and 1 to get 3.
\frac{-300}{6142-52\times 1^{3}-12\times 1^{2}+96-80}
Subtract 3 from 6145 to get 6142.
\frac{-300}{6142-52\times 1-12\times 1^{2}+96-80}
Calculate 1 to the power of 3 and get 1.
\frac{-300}{6142-52-12\times 1^{2}+96-80}
Multiply 52 and 1 to get 52.
\frac{-300}{6090-12\times 1^{2}+96-80}
Subtract 52 from 6142 to get 6090.
\frac{-300}{6090-12\times 1+96-80}
Calculate 1 to the power of 2 and get 1.
\frac{-300}{6090-12+96-80}
Multiply 12 and 1 to get 12.
\frac{-300}{6078+96-80}
Subtract 12 from 6090 to get 6078.
\frac{-300}{6174-80}
Add 6078 and 96 to get 6174.
\frac{-300}{6094}
Subtract 80 from 6174 to get 6094.
-\frac{150}{3047}
Reduce the fraction \frac{-300}{6094} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}