Evaluate
\frac{1}{20920706406}\approx 4.779953318 \cdot 10^{-11}
Factor
\frac{1}{2 \cdot 3 ^ {21}} = 4.7799533179874025 \times 10^{-11}
Share
Copied to clipboard
\frac{4\left(-3\right)^{5}\times 2^{4}}{9\left(-2^{7}\right)\times 9^{12}}
Cancel out 2 in both numerator and denominator.
\frac{4\left(-243\right)\times 2^{4}}{9\left(-2^{7}\right)\times 9^{12}}
Calculate -3 to the power of 5 and get -243.
\frac{-972\times 2^{4}}{9\left(-2^{7}\right)\times 9^{12}}
Multiply 4 and -243 to get -972.
\frac{-972\times 16}{9\left(-2^{7}\right)\times 9^{12}}
Calculate 2 to the power of 4 and get 16.
\frac{-15552}{9\left(-2^{7}\right)\times 9^{12}}
Multiply -972 and 16 to get -15552.
\frac{-15552}{9^{13}\left(-2^{7}\right)}
To multiply powers of the same base, add their exponents. Add 1 and 12 to get 13.
\frac{-15552}{2541865828329\left(-2^{7}\right)}
Calculate 9 to the power of 13 and get 2541865828329.
\frac{-15552}{2541865828329\left(-128\right)}
Calculate 2 to the power of 7 and get 128.
\frac{-15552}{-325358826026112}
Multiply 2541865828329 and -128 to get -325358826026112.
\frac{1}{20920706406}
Reduce the fraction \frac{-15552}{-325358826026112} to lowest terms by extracting and canceling out -15552.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}