Evaluate
\frac{1}{262144}=0.000003815
Factor
\frac{1}{2 ^ {18}} = 3.814697265625 \times 10^{-6}
Share
Copied to clipboard
\frac{\left(-2\right)^{5}\left(-2^{-1}\right)^{21}}{\left(-2^{\frac{1}{2}}\right)^{4}}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{-32\left(-2^{-1}\right)^{21}}{\left(-2^{\frac{1}{2}}\right)^{4}}
Calculate -2 to the power of 5 and get -32.
\frac{-32\left(-\frac{1}{2}\right)^{21}}{\left(-2^{\frac{1}{2}}\right)^{4}}
Calculate 2 to the power of -1 and get \frac{1}{2}.
\frac{-32\left(-\frac{1}{2097152}\right)}{\left(-2^{\frac{1}{2}}\right)^{4}}
Calculate -\frac{1}{2} to the power of 21 and get -\frac{1}{2097152}.
\frac{\frac{1}{65536}}{\left(-2^{\frac{1}{2}}\right)^{4}}
Multiply -32 and -\frac{1}{2097152} to get \frac{1}{65536}.
\frac{1}{65536\left(-2^{\frac{1}{2}}\right)^{4}}
Express \frac{\frac{1}{65536}}{\left(-2^{\frac{1}{2}}\right)^{4}} as a single fraction.
\frac{1}{65536\left(-1\right)^{4}\times \left(2^{\frac{1}{2}}\right)^{4}}
Expand \left(-2^{\frac{1}{2}}\right)^{4}.
\frac{1}{65536\left(-1\right)^{4}\times 2^{2}}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{2} and 4 to get 2.
\frac{1}{65536\times 1\times 2^{2}}
Calculate -1 to the power of 4 and get 1.
\frac{1}{65536\times 1\times 4}
Calculate 2 to the power of 2 and get 4.
\frac{1}{65536\times 4}
Multiply 1 and 4 to get 4.
\frac{1}{262144}
Multiply 65536 and 4 to get 262144.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}